Volume 11, Issue 4 (Vol.11 No.4 Jan 2023)                   rbmb.net 2023, 11(4): 590-598 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salemi O, Noormohammadi Z, Bahrami F, Siadat S D, Ajdary S. Evaluation of the Immunogenicity of Recombinant Espb, Espc Proteins from Mycobacterium Tuberculosis and the Fusion Espc/Espb Protein in BALB/C Mice. rbmb.net 2023; 11 (4) :590-598
URL: http://rbmb.net/article-1-1026-en.html
Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran 13169-43551, Iran.
Abstract:   (1593 Views)
Background: Two newly identified proteins, EspB and EspC are involved in the pathogenesis of Mycobacterium tuberculosis. The objective of the present study was to evaluate the immunogenicity of recombinant EspC, EspB, and EspC/EspB fusion proteins in mice.

Methods: BALB/c mice were immunized subcutaneously with recombinant EspC, EspB, and fusion EspC/EspB proteins, three times with along with Quil-A as an adjuvant. The cellular and humoral immune responses were evaluated by quantifying IFN-g, IL-4, IgG, IgG1, and IgG2a antibodies against the antigens.

Results: The results showed that the mice immunized with recombinant EspC, EspB, and EspC/EspB proteins did not produce IL-4, whereas IFN-g was secreted in response to all three proteins. EspC/EspB group produced significant amounts of IFN-g in response to stimulation with all the three recombinant proteins (P<0.001). In mice immunized with EspC, high levels of IFN-g were detected in response to EspC/EspB, and EspC (P<0.0001); while mice immunized with EspB produced lower levels of IFN- g in response to EspC/EspB, and EspB (P<0.05).

Conclusions: All the three recombinant proteins induced Th1-type immune responses in mice against EspB and EspC; however, EspC/EspB protein is more desirable due to the presence of epitopes from both EspC and EspB proteins and the production of immune responses against both.
Full-Text [PDF 628 kb]   (1270 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2022/08/13 | Accepted: 2022/08/14 | Published: 2023/04/3

1. Bloom BR, Atun R. Back to the future: Rethinking global control of tuberculosis. Sci Transl Med. 2016;8(329):329ps7. [DOI:10.1126/scitranslmed.aaf2944] [PMID]
2. Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016;13(10):e1002152. [DOI:10.1371/journal.pmed.1002152] [PMID] [PMCID]
3. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642-56. [DOI:10.1016/S0140-6736(19)30308-3] [PMID]
4. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne JA, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess. 2013;17(37):1-372, v-vi. [DOI:10.3310/hta17370] [PMID] [PMCID]
5. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997;61(2):136-69. https://doi.org/10.1128/mmbr.61.2.136-169.1997 [DOI:10.1128/.61.2.136-169.1997] [PMID] [PMCID]
6. Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb). 2015;95 Suppl 1:S150-4. [DOI:10.1016/j.tube.2015.02.019] [PMID]
7. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, et al. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol. 2007;5(11):883-91. [DOI:10.1038/nrmicro1773] [PMID]
8. Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A, et al. An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep. 2017;7:46666. [DOI:10.1038/srep46666] [PMID] [PMCID]
9. Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr. 2017;5(3). [DOI:10.1128/microbiolspec.TBTB2-0001-2015] [PMID]
10. Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko EV, Conrady DG, et al. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure. 2015;23(3):571-83. [DOI:10.1016/j.str.2015.01.002] [PMID]
11. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, et al. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol. 2007;66(3):787-800. [DOI:10.1111/j.1365-2958.2007.05959.x] [PMID]
12. Satchidanandam V, Amara RR, Uchil PD, Singh V. The regulatory elements of the Mycobacterium tuberculosis gene Rv3881c function efficiently in Escherichia coli. FEMS Microbiol Lett. 2003;218(2):365-70. [DOI:10.1016/S0378-1097(02)01185-0] [PMID]
13. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A. 2005;102(30):10676-81. [DOI:10.1073/pnas.0504922102] [PMID] [PMCID]
14. Millington KA, Fortune SM, Low J, Garces A, Hingley-Wilson SM, Wickremasinghe M, et al. Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 2011;108(14):5730-5. [DOI:10.1073/pnas.1015153108] [PMID] [PMCID]
15. McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, et al. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 2007;3(8):e105. [DOI:10.1371/journal.ppat.0030105] [PMID] [PMCID]
16. Sidders B, Pirson C, Hogarth PJ, Hewinson RG, Stoker NG, Vordermeier HM, et al. Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect Immun. 2008;76(9):3932-9. [DOI:10.1128/IAI.00150-08] [PMID] [PMCID]
17. Salemi O, Noormohammadi Z, Bahrami F, Siadat SD, Ajdary S. Cloning, Expression and Purification of Espc, Espb and Espc/Espb Proteins of Mycobacterium tuberculosis ESX-1 Secretion System. Rep Biochem Mol Biol. 2020;8(4):465-72.
18. Martin C. Tuberculosis vaccines: past, present and future. Curr Opin Pulm Med. 2006;12(3):186-91. [DOI:10.1097/01.mcp.0000219267.27439.1b] [PMID]
19. Barker LF, Brennan MJ, Rosenstein PK, Sadoff JC. Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol. 2009;21(3):331-8. [DOI:10.1016/j.coi.2009.05.017] [PMID]
20. van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, et al. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine. 2010;28(20):3571-81. [DOI:10.1016/j.vaccine.2010.02.094] [PMID]
21. Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol. 2004;53(6):1677-93. [DOI:10.1111/j.1365-2958.2004.04261.x] [PMID]
22. Gijsbers A, Vinciauskaite V, Siroy A, Gao Y, Tria G, Mathew A, et al. Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Curr Res Struct Biol. 2021;3:153-64. [DOI:10.1016/j.crstbi.2021.06.001] [PMID] [PMCID]
23. Chen JM, Zhang M, Rybniker J, Boy-Rottger S, Dhar N, Pojer F, et al. Mycobacterium tuberculosis EspB binds phospholipids and mediates EsxA-independent virulence. Mol Microbiol. 2013;89(6):1154-66. [DOI:10.1111/mmi.12336] [PMID]
24. Lou Y, Rybniker J, Sala C, Cole ST. EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol. 2017;103(1):26-38. [DOI:10.1111/mmi.13575] [PMID]
25. Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol. 2018;15(3):206-15. [DOI:10.1038/cmi.2017.113] [PMID] [PMCID]
26. Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr. 2016;4(5). [DOI:10.1128/microbiolspec.TBTB2-0018-2016] [PMID] [PMCID]
27. Xu G, Wang J, Gao GF, Liu CH. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell. 2014;5(10):728-36. [DOI:10.1007/s13238-014-0077-5] [PMID] [PMCID]
28. da Silva MV, Tiburcio MG, Machado JR, Silva DA, Rodrigues DB, Rodrigues V, et al. Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis. J Immunol Res. 2015;2015:639107. [DOI:10.1155/2015/639107] [PMID] [PMCID]
29. Tan S, Lin N, Huang M, Wang Q, Tan Y, Li B, et al. CTL immunogenicity of Rv3615c antigen and diagnostic performances of an ESAT-6/CFP-10/Rv3615c antigen cocktail for Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2017;107:5-12. [DOI:10.1016/j.tube.2017.07.011] [PMID]
30. Zhang X, Su Z, Zhang X, Hu C, Yu J, Gao Q, et al. Generation of Mycobacterium tuberculosis-specific recombinant antigens and evaluation of the clinical value of antibody detection for serological diagnosis of pulmonary tuberculosis. Int J Mol Med. 2013;31(3):751-7. [DOI:10.3892/ijmm.2013.1254] [PMID]
31. Kong H, Dong C, Xiong S. A novel vaccine p846 encoding Rv3615c, Mtb10.4, and Rv2660c elicits robust immune response and alleviates lung injury induced by Mycobacterium infection. Hum Vaccin Immunother. 2014;10(2):378-90. [DOI:10.4161/hv.27121] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb