Volume 7, Issue 1 (Vol.7 No.1 Oct 2018)                   rbmb.net 2018, 7(1): 67-75 | Back to browse issues page

PMID: 30324120

XML Print


Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran, Iran.
Abstract:   (5403 Views)
Background: Cutaneous leishmaniasis (CL) is a serious public health problem in many tropical countries. The infection is caused by a protozoan parasite of Leishmania genus transmitted by Phlebotominae sandflies. In the present study, we constructed a eukaryotic expression vector to produce a fusion protein containing LmSTI1 from Leishmania major (L. major) and PpSP42 from Phlebotomus papatasi (Ph. papatasi). In future studies we will test this construct as a DNA vaccine against zoonotic CL.

Methods: The nucleotide sequences encoding the LmSTI1 protein and a fragment encoding 79% of PpSP42 were amplified using L. major and Ph. papatasi genomic DNA, respectively. The amplicons were cloned into the pcDNA3.1(+) eukaryotic expression vector. The recombinant plasmid pcDNA-LmSTI1Pp42 was propagated in Escherichia coli (E. coli) and used to transfect HEK-293T cells. The expressed fusion protein was analyzed by Western blotting using anti-LmSTI1 mouse serum.

Results: Sequences encoding LmSTI1 and partial PpSP42 were cloned into pcDNA3.1(+). Production of the recombinant LmSTI1Pp42 fusion protein was confirmed by Western blotting.

Conclusions: An LmSTI1Pp42 fusion protein was expressed HEK-293T cells. This construct may be an effective DNA vaccine against CL.
 
Full-Text [PDF 908 kb]   (2634 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2017/12/30 | Accepted: 2018/02/3 | Published: 2018/04/2

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.