Volume 9, Issue 2 (Vol.9 No.2 Jul 2020)                   rbmb.net 2020, 9(2): 180-187 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahzadeh F, Nejatollahi F. Anti-Proliferative Effect of Specific Anti-EGFR Single Chain Antibody on Triple Negative Breast Cancer Cells. rbmb.net 2020; 9 (2) :180-187
URL: http://rbmb.net/article-1-399-en.html
Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran & Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (3160 Views)
Background: Targeted therapy is an important treatment strategy that is widely used for cancer therapy. Epidermal growth factor receptor (EGFR) is overexpressed in a significant percentage of Triple-negative breast cancer (TNBC) patients. Although Cetuximab, which targets EGFR, has shown some inhibitory effects on TNBC cells, Cetuximab resistance cases due to ligand-independent activating mutations in the EGFR gene limit its application. Due to various benefits of single chain antibodies (scFvs), the use of these antibodies in cancer targeted therapy is increasing. In this study, a specific anti-EGFR antibody was isolated and evaluated.

Methods: Panning procedure was used against an immunodominant epitope of EGFR in its dimerization arm using a diverse phage library. Polymerase Chain Reaction (PCR) and fingerprinting were applied to identify the specific clones. The MTT tetrazolium assay was performed to evaluate the inhibitory effects of selected anti-EGFR scFv phage antibody on MDA-MB-468, a TNBC cell line.

Results: After four round of panning, one dominant pattern was observed in DNA fingerprinting with frequency of 85%. The growth of MDA-MB-468 cells was decreased dose-dependently after treatment with anti-EGFR scFv phage antibody. No significant inhibitory effect of M13KO7 helper phage as negative control on the cell growth of MDA-MB-468 was observed (p> 0.05).

Conclusions: The selected anti-EGFR scFv with high anti proliferative effect on TNBC cells offers an effective alternative for TNBC targeted therapy. The antibody, which binds to the dimerization arm of EGFR and inhibits EGFR dimerization, could also overcome TNBC cases with Cetuximab resistance due to ligand-independent activating mutations.
Full-Text [PDF 656 kb]   (1478 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2019/09/3 | Accepted: 2019/09/8 | Published: 2020/10/7

References
1. 1. Wang Y, Zhang G, Han J. HIF1A‐AS2 predicts poor prognosis and regulates cell migration and invasion in triple‐negative breast cancer. Journal of cellular biochemistry. 2019;120(6):10513-8. [DOI:10.1002/jcb.28337] [PMID]
2. Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res. 2018;10:6823-6833. [DOI:10.2147/CMAR.S185176] [PMID] [PMCID]
3. Levva S, Kotoula V, Kostopoulos I, Manousou K, Papadimitriou C, Papadopoulou K, et al. Prognostic evaluation of epidermal growth factor receptor (EGFR) genotype and phenotype parameters in triple-negative breast cancers. Cancer Genomics Proteomics. 2017;14(3):181-195. [DOI:10.21873/cgp.20030] [PMID] [PMCID]
4. Siddharth S, Sharma D. Racial disparity and triple-negative breast cancer in African-American women: a multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers. 2018;10(12):514. [DOI:10.3390/cancers10120514] [PMID] [PMCID]
5. Baselga J, Gómez P, Greil R, Braga S, Climent MA, Wardley AM, et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2013;31(20):2586-92. [DOI:10.1200/JCO.2012.46.2408] [PMID] [PMCID]
6. Ueno NT, Zhang D. Targeting EGFR in triple negative breast cancer. J Cancer. 2011;2:324-8. [DOI:10.7150/jca.2.324] [PMID] [PMCID]
7. Reguera-Nuñez E, Xu P, Chow A, Man S, Hilberg F, Kerbel RS. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer. J Exp Clin Cancer Res. 2019;38(1):16. [DOI:10.1186/s13046-018-0999-5] [PMID] [PMCID]
8. Nakai K, Hung M-C, Yamaguchi H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American journal of cancer research. 2016;6(8):1609-1623.
9. Gatzka M. Targeted tumor therapy remixed-An update on the use of small-molecule drugs in combination therapies. Cancers (Basel). 2018;10(6):155. [DOI:10.3390/cancers10060155] [PMID] [PMCID]
10. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. The New England journal of medicine. 2005;20;353(16):1734-6. [DOI:10.1056/NEJMe058196] [PMID]
11. Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA. Review of triple negative breast Cancer and the impact of inducible nitric oxide synthase on tumor biology and patient outcomes. Crit Rev Oncog. 2016;21(5-6):333-351. [DOI:10.1615/CritRevOncog.2017021307] [PMID] [PMCID]
12. Spano J, Fagard R, Soria J-C, Rixe O, Khayat D, Milano G. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Annals of oncology. 2005;16(2):189-194. [DOI:10.1093/annonc/mdi057] [PMID]
13. Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb perspect biol. 2014;6(4):a020768. [DOI:10.1101/cshperspect.a020768] [PMID] [PMCID]
14. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol oncol. 2018;12(1):3-20. [DOI:10.1002/1878-0261.12155] [PMID] [PMCID]
15. Krasinskas AM. EGFR signaling in colorectal carcinoma. Patholog Res Int. 2011;2011:932932. [DOI:10.4061/2011/932932] [PMID] [PMCID]
16. Omarini C, Guaitoli G, Pipitone S, Moscetti L, Cortesi L, Cascinu S, et al. Neoadjuvant treatments in triple-negative breast cancer patients: where we are now and where we are going. Cancer Manag Res. 2018;10:91-103. [DOI:10.2147/CMAR.S146658] [PMID] [PMCID]
17. Flynn JF, Wong C, Wu JM. Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. Journal of oncology. 2009;2009:526963. [DOI:10.1155/2009/526963] [PMID] [PMCID]
18. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):15-31. [DOI:10.1517/14728222.2011.648617] [PMID] [PMCID]
19. Nejatollahi F, Silakhori S, Moazen B. Isolation and evaluation of specific human recombinant antibodies from a phage display library against her3 cancer signaling antigen. Middle East Journal of Cancer. 2014;5(3):137-144.
20. Moazen B, Ebrahimi E, Nejatollahi F. Single Chain Antibodies Against gp55 of Human Cytomegalovirus (HCMV) for Prophylaxis and Treatment of HCMV Infections. Jundishapur J Microbiol. 2016;9(3):e16241. [DOI:10.5812/jjm.16241] [PMID] [PMCID]
21. Mohammadi M, Nejatollahi F, Sakhteman A, Zarei N. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies. Journal of theoretical biology. 2016;402:100-106. [DOI:10.1016/j.jtbi.2016.04.016] [PMID]
22. Nejatollahi F, Bayat P, Moazen B. Cell growth inhibition and apoptotic effects of a specific anti-RTFscFv antibody on prostate cancer, but not glioblastoma, cells. F1000Research. 2017;6:156. [DOI:10.12688/f1000research.10803.1] [PMID] [PMCID]
23. Hosseinzadeh F, Mohammadi S, Nejatollahi F. Production and evaluation of specific single-chain antibodies against CTLA-4 for cancer-targeted therapy. Rep Biochem Mol Biol. 2017;6(1):8-14.
24. Nejatollahi F, Hodgetts SJ, Vallely PJ, Burnie JP. Neutralising human recombinant antibodies to human cytomegalovirus glycoproteins gB and gH. FEMS Immunol Med Microbiol. 2002;34(3):237-44. [DOI:10.1111/j.1574-695X.2002.tb00630.x] [PMID]
25. Lheureux S, Denoyelle C, Ohashi P, De Bono J, Mottaghy F. Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):41-54. [DOI:10.1007/s00259-017-3695-3] [PMID] [PMCID]
26. Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single-chain antibody derivatives for targeted drug delivery. Mol Med. 2016;22:258-270. [DOI:10.2119/molmed.2016.00043] [PMID] [PMCID]
27. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250. [DOI:10.1155/2012/980250] [PMID] [PMCID]
28. Mohammadi SS, Hosseinzadeh F, Nejatollahi F. Production of Specific Anti-EGFR Single Chain Antibodies: A Promising Strategy in the Immunotherapy of EGFR Expressing Tumor Tissues. Iranian Journal of Cancer Prevention. 2017;10(1):1-6. [DOI:10.17795/ijcp-6666]
29. Chao G, Olsen M, Wolf-Yadlin A, Wittrup K, Lauffenburger D. Epidermal growth factor receptor polypeptides and antibodies. Google Patents; 2007.
30. Mizuguchi T, Ohara N, Iida M, Ninomiya R, Wada S, Kiso Y, et al. Evaluation of dimerization-inhibitory activities of cyclic peptides containing a β-hairpin loop sequence of the EGF receptor. Bioorganic & medicinal chemistry. 2012;20(19):5730-5737. [DOI:10.1016/j.bmc.2012.08.013] [PMID]
31. Hanold LE, Oruganty K, Ton NT, Beedle AM, Kannan N, Kennedy EJ. Inhibiting EGFR dimerization using triazolyl-bridged dimerization arm mimics. PloS one. 2015;10(3):e0118796. [DOI:10.1371/journal.pone.0118796] [PMID] [PMCID]
32. Mohammadi M, Nejatollahi F, Ghasemi Y, Faraji SN. Anti-metastatic and anti-invasion effects of a specific anti-MUC18 scFv antibody on breast cancer cells. Appl Biochem Biotechnol. 2017;181(1):379-390. [DOI:10.1007/s12010-016-2218-1] [PMID]
33. Moazen B, Zarrinhaghighi A, Nejatollahi F. Selection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells. Rep Biochem Mol Biol. 2018;7(1):45-51.
34. Zarei N, Fazeli M, Mohammadi M, Nejatollahi F. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scfvs: Involvement of bioinformatics-based design of novel epitopes. Breast cancer research and treatment. 2018;169(3):427-436. [DOI:10.1007/s10549-017-4641-6] [PMID]
35. El Guerrab A, Bamdad M, Kwiatkowski F, Bignon Y-J, Penault-Llorca F, Aubel C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget. 2016;7(45):73618-73637. [DOI:10.18632/oncotarget.12037] [PMID] [PMCID]
36. Ji X, Shen Y, Sun H, Gao X. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel. Tumor Biology. 2016;37(8):10085-96. [DOI:10.1007/s13277-016-4803-x] [PMID]
37. Liu D, Wang C, Li C, Zhang X, Zhang B, Mi Z, et al. Production and Characterization of a humanized single-chain antibody against human integrin αvβ3 protein. J Biol Chem. 2011;286(27):24500-24507. [DOI:10.1074/jbc.M110.211847] [PMID] [PMCID]
38. Tur MK, Huhn M, Thepen T, Stocker M, Krohn R, Vogel S, et al. Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res. 2003;63(23):8414-9.
39. Schanzer JM, Fichtner I, Baeuerle PA, Kufer P. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells. J Immunother. 2006;29(5):477-88. [DOI:10.1097/01.cji.0000210080.60178.fd] [PMID]
40. Alric C, Herve-Aubert K, Aubrey N, Melouk S, Lajoie L, Même W, et al. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J Nanobiotechnology. 2018;16(1):18. [DOI:10.1186/s12951-018-0341-6] [PMID] [PMCID]
41. Morino K, Katsumi H, Akahori Y, Iba Y, Shinohara M, Ukai Y, et al. Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J Immunol Methods. 2001;257(1-2):175-84. [DOI:10.1016/S0022-1759(01)00462-8]
42. Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, et al. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat Rev. 2017;53:111-119. [DOI:10.1016/j.ctrv.2016.12.010] [PMID]
43. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2):331-45. [DOI:10.1007/s10549-012-2289-9] [PMID] [PMCID]
44. Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, et al. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer. Cell reports. 2017;21(5):1140-1149. [DOI:10.1016/j.celrep.2017.10.015] [PMID]
45. Hubbard SR. EGF receptor inhibition: attacks on multiple fronts. Cancer cell. 2005;7(4):287-8. [DOI:10.1016/j.ccr.2005.04.004] [PMID]
46. Ruan Z, Kannan N. Altered conformational landscape and dimerization dependency underpins the activation of EGFR by αC-β4 loop insertion mutations. Proc Natl Acad Sci U S A. 2018;115(35):E8162-E8171. [DOI:10.1073/pnas.1803152115] [PMID] [PMCID]
47. Valley CC, Arndt-Jovin DJ, Karedla N, Steinkamp MP, Chizhik AI, Hlavacek WS, et al. Enhanced dimerization drives ligand-independent activity of mutant EGFR in lung cancer. Mol Biol Cell. 2015;26(22):4087-4099. [DOI:10.1091/mbc.E15-05-0269] [PMID] [PMCID]
48. Budhiarko D, Putra T, Harsono A, Masykura N, Tjindarbumi D, Widjajahakim G, et al. Frequency of L858R and L861Q EGFR mutation in triple-negative, luminal and HER2 of Indonesian breast cancers patients. Annals of Oncology. 2017;28(Suppl_10):X171. [DOI:10.1093/annonc/mdx678.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb