Volume 9, Issue 1 (Vol.9 No.1 Apr 2020)                   rbmb.net 2020, 9(1): 26-32 | Back to browse issues page

DOI: 10.29252/rbmb.9.1.26
PMCID: PMC7424426

XML Print

Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Abstract:   (549 Views)
Background: The tumor suppressing protein p53 and its downstream effector p21 play important roles in cell cycle regulation. Deficiency or deactivation of these proteins as a result of gene alterations has been indicated in several cancers. Such genetic variations could be considered as susceptibility indicators in acute lymphocytic leukemia (ALL). Therefore, we investigated the associations between ALL risk and TP53 codon 72, p21 codon 31, and MDM2 SNP309 polymorphisms in an Iranian population.

Methods: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the MDM2 T309G (rs2279744), TP53 codon Arg72Pro (rs1042522), and p21 Ser31Arg (rs1801270) single nucleotide polymorphisms (SNPs). This study was performed in 115 ALL patients and 115 healthy controls in Khuzestan province in southwest Iran.

Results: In the control group and ALL patients, p21 Ser/Arg, and MDM2 TG and GG genotypes were associated with significant 1.81-fold (95% confidence interval CI= 1.008-3.267; P ˂ 0.05), 11.07-fold (95% CI= 5.10-24.05; P < 0.0001), and 19.41-fold (95% CI= 8.56-43.99; P < 0.0001) increased risks for ALL, respectively. The TP53 72 Arg allele was significantly more prevalent in ALL patients (56.96%) than in control subjects (47.39%), and was significantly associated with ALL (OR= 1.47; 95% CI = 1.017-2.121, P < 0.05).

Conclusions: The MDM2 T309G and the p21 Ser31Arg SNPs indicate a significantly increased risk for developing ALL in Khuzestan province.
Full-Text [PDF 270 kb]   (175 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2019/12/23 | Accepted: 2020/01/4 | Published: 2020/05/19

1. 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492]
2. Miranda-Filho A, Pineros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 2018;5(1): e14-e24. [DOI:10.1016/S2352-3026(17)30232-6]
3. Koohi F, Salehiniya H, Shamlou R, Eslami S, Ghojogh ZM, Kor Y, et al. Leukemia in Iran: Epidemiology and morphology trends. Asian Pac J Cancer Prev. 2015;16(17):7759-63. [DOI:10.7314/APJCP.2015.16.17.7759]
4. Amoori N, Mirzaei M, Cheraghi M. Incidence of cancers in Kuzestan province of iran: trend from 2004 to 2008. Asian Pac J Cancer Prev. 2014;15(19):8345-9. [DOI:10.7314/APJCP.2014.15.19.8345]
5. Ahmadi Z, Shariati AA, Fayazi S, Latifi M. The Association Between Lifestyle and Incidence of Leukemia in Adults in Ahvaz, Iran. J Chronic Dis Care. 2016;5(2). [DOI:10.17795/jjcdc-32924]
6. Bain BJ. Leukaemia diagnosis: John Wiley & Sons; 2017. [DOI:10.1002/9781119210511]
7. Faderl S, O'brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, et al. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer. 2010;116(5):1165-76. [DOI:10.1002/cncr.24862]
8. Robak T. Acute lymphoblastic leukaemia in elderly patients: biological characteristics and therapeutic approaches. Drugs Aging. 2004;21(12):779-91. [DOI:10.2165/00002512-200421120-00003]
9. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307-10. [DOI:10.1038/35042675]
10. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA repair (Amst). 2016;42:63-71. [DOI:10.1016/j.dnarep.2016.04.008]
11. Dunna NR, Vure S, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, et al. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pac J Cancer Prev. 2012;13(1):347-50. [DOI:10.7314/APJCP.2012.13.1.349]
12. Kassam S, Meyer P, Corfield A, Mikuz G, Sergi C. Single nucleotide polymorphisms (SNPs): history, biotechnological outlook and practical applications. Current Pharmacogenomics. 2005;3(3):237-245. [DOI:10.2174/1570160054864021]
13. Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer. 2004;108(2):196-9. [DOI:10.1002/ijc.11548]
14. Basu S, Murphy ME. Genetic modifiers of the p53 pathway. Cold Spring Harb Perspect Med. 2016;6(4):a026302. [DOI:10.1101/cshperspect.a026302]
15. Chedid M, Michieli P, Lengel C, Huppi K, Givol D. A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene. 1994;9(10):3021-4.
16. Grochola LF, Zeron-Medina J, Meriaux S, Bond GL. Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb perspect Biol. 2010;2(5):a001032. [DOI:10.1101/cshperspect.a001032]
17. Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(1):127-30.
18. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119(5):591-602. [DOI:10.1016/j.cell.2004.11.022]
19. Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. The Journal of biological chemistry. 2004;279(16):16000-16006. [DOI:10.1074/jbc.M312264200]
20. Ebid GT, Sedhom IA, El-Gammal MM, Moneer MM. MDM2 T309G has a synergistic effect with P21 ser31arg single nucleotide polymorphisms on the risk of acute myeloid leukemia. Prevention Asian Pac J Cancer Prev. 2012;13(9):4315-20. [DOI:10.7314/APJCP.2012.13.9.4315]
21. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16(3):1215. [DOI:10.1093/nar/16.3.1215]
22. Chen J, Zhu B, Chen J, Li Y. Genetic variations in MDM2 and P53 genes confer risk for adult acute lymphoblastic leukemia in a Chinese population. DNA Cell Biol. 2013;32(7):414-9. [DOI:10.1089/dna.2012.1900]
23. Phang BH, Linn YC, Li H, Sabapathy K. MDM2 SNP309 G allele decreases risk but does not affect onset age or survival of Chinese leukaemia patients. Eur J Cancer. 2008;44(5):760-6. [DOI:10.1016/j.ejca.2008.02.007]
24. Yan YL, Han F, Tan WM, Wu CP, Qin X. Association between the MDM2 T309G polymorphism and leukemia risk: a meta-analysis. Asian Pac J Cancer Prev. 2014;15(16):6767-72. [DOI:10.7314/APJCP.2014.15.16.6767]
25. Schulz E, Kashofer K, Heitzer E, Mhatre KN, Speicher MR, Hoefler G, et al. Preexisting TP53 mutation in therapy-related acute myeloid leukemia. Ann Hematol. 2015;94(3):527-9. [DOI:10.1007/s00277-014-2191-0]
26. Dunna NR, Vure S, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, et al. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pac J Cancer Prev. 2012;13(1):347-50. [DOI:10.7314/APJCP.2012.13.1.349]
27. Tian X, Dai S, Sun J, Jiang S, Jiang Y. Association between TP53 Arg72Pro polymorphism and leukemia risk: a meta-analysis of 14 case-control studies. Sci Rep. 2016;6:24097. [DOI:10.1038/srep24097]
28. Birgander R, Själander A, Saha N, Spitsyn V, Beckman L, Beckman G. The Codon 31 Polymorphism of the p53-lnducible Gene p21 Shows Distinct Differences between Major Ethnic Groups. Hum Hered. 1996;46(3):148-54. [DOI:10.1159/000154344]
29. Kawamura M, Ohnishi H, Guo S-X, Sheng XM, Minegishi M, Hanada R, et al. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res. 1999;23(2):115-26. [DOI:10.1016/S0145-2126(98)00146-5]