Volume 9, Issue 1 (Vol.9 No.1 Apr 2020)                   rbmb.net 2020, 9(1): 71-81 | Back to browse issues page

DOI: 10.29252/rbmb.9.1.71
PMCID: PMC7424416


XML Print


Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Abstract:   (444 Views)
Background: Obesity, a medical condition with impaired adipokine secretion and function, has a detrimental effect on insulin and glucose metabolism. CTRP3 and CTRP9 are adipokines with possible roles in energy homeostasis regulation. We sought to compare CTRP3, CTRP9, and inflammatory gene expression in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from obese women who underwent bariatric surgery and non-obese women as controls.
Methods: For this study, the investigators recruited 20 morbidly obese women (BMI> 35) who qualified for bariatric surgery and 20 normal-weight women (BMI< 25) who underwent elective surgeries. Real-time PCR was performed to investigate mRNA expression of CTRP3, CTRP9, and the inflammatory genes IL1-β, IL-6, MCP-1, and TNF-α in SAT and VAT from both obese patients and controls.
Results: We observed that CTRP3 mRNA levels were significantly greater in VAT from obese patients than from controls (P< 0.0003). Also, patient group had higher levels of CTRP9 that control group (P< 0.0026). Inflammatory cytokines were markedly increased in SAT of obese patients compared to controls (P< 0.05). In addition, our results revealed a positive correlation of CTRP9 with HOMA-IR and waist circumference in VAT and CTRP3 with IL-1β, MCP-1, and TNF-α in SAT.
Conclusions: Both CTRP3 and CTRP9 expression were significantly higher in VAT from obese patients than from controls, and CTRP3 expression positively correlated with inflammatory parameters. Our findings indicate that CTRP3 and CTRP9 might be important in regulating glucose metabolism and obesity-related conditions such as inflammation.
Full-Text [PDF 396 kb]   (130 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2019/12/26 | Accepted: 2020/01/4 | Published: 2020/05/19

References
1. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673-89. [DOI:10.1007/s40273-014-0243-x] [PMID] [PMCID]
2. Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity pathogenesis: an Endocrine Society scientific statement. Endocr Rev. 2017;38(4):267-296. [DOI:10.1210/er.2017-00111] [PMID] [PMCID]
3. Egger G, Dixon J. Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res Int. 2014;2014,731685 [DOI:10.1155/2014/731685] [PMID] [PMCID]
4. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11-8. [DOI:10.1111/j.1467-789X.2009.00623.x] [PMID]
5. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. [DOI:10.1038/nri2921] [PMID] [PMCID]
6. Seldin MM, Tan SY, Wong GW. Metabolic function of the CTRP family of hormones. Reviews in Endocrine and Metabolic Disorders. 2014;15(2):111-23. [DOI:10.1007/s11154-013-9255-7] [PMID] [PMCID]
7. Schäffler A, Buechler C. CTRP family: linking immunity to metabolism. Trends Endocrinol Metab. 2012;23(4):194-204. [DOI:10.1016/j.tem.2011.12.003] [PMID]
8. Li Y, Wright GL, Peterson JM. C1q/TNF-related protein 3 (CTRP3) function and regulation. Compr Physiol. 2017;7(3):863-878. [DOI:10.1002/cphy.c160044] [PMID] [PMCID]
9. Wei Z, Lei X, Petersen PS, Aja S, Wong GW. Targeted deletion of C1q/TNF-related protein 9 (CTRP9) increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice. Am J Physiol Endocrinol Metab. 2014;306(7):e779-90. [DOI:10.1152/ajpendo.00593.2013] [PMID] [PMCID]
10. Peterson JM, Wei Z, Wong GW. C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem. 2010;285(51):39691-701. [DOI:10.1074/jbc.M110.180695] [PMID] [PMCID]
11. Li X, Jiang L, Yang M, Wu Y-w, Sun S-x, Sun J-z. CTRP3 modulates the expression and secretion of adipokines in 3T3-L1 adipocytes. Endocr J. 2014;61(12):1153-62. [DOI:10.1507/endocrj.EJ14-0161] [PMID]
12. Akiyama H, Furukawa S, Wakisaka S, Maeda T. CTRP3/cartducin promotes proliferation and migration of endothelial cells. Mol Cell Biochem. 2007;304(1-2):243-8. [DOI:10.1007/s11010-007-9506-6] [PMID]
13. Hou Q, Lin J, Huang W, Li M, Feng J, Mao X. CTRP3 Stimulates Proliferation and Anti-Apoptosis of Prostate Cells through PKC Signaling Pathways. PloS one. 2015;10(7):e0134006. [DOI:10.1371/journal.pone.0134006] [PMID] [PMCID]
14. Wolf RM, Lei X, Yang Z-C, Nyandjo M, Tan SY, Wong GW. CTRP3 deficiency reduces liver size and alters IL-6 and TGFβ levels in obese mice. Am J Physiol Endocrinol Metab. 2016;310(5):E332-45. [DOI:10.1152/ajpendo.00248.2015] [PMID] [PMCID]
15. Li X, Jiang L, Yang M, Wu Y-w, Sun S-x, Sun J-z. Expression of CTRP3, a novel adipokine, in rats at different pathogenic stages of type 2 diabetes mellitus and the impacts of GLP-1 receptor agonist on it. Journal of diabetes research. 2014;2014(9933):398518. [DOI:10.1155/2014/398518] [PMID] [PMCID]
16. Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Ge G, Spooner E, Hug C, et al. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 2009;23(1):241-58. [DOI:10.1096/fj.08-114991] [PMID] [PMCID]
17. Peterson JM, Wei Z, Seldin MM, Byerly MS, Aja S, Wong GW. CTRP9 transgenic mice are protected from diet-induced obesity and metabolic dysfunction. Am J Physiol Regul Integr Comp Physiol. 2013;305(5);R522-33. [DOI:10.1152/ajpregu.00110.2013] [PMID] [PMCID]
18. Moradi N, Fadaei R, Emamgholipour S, Kazemian E, Panahi G, Vahedi S, et al. Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PloS one. 2018;13(1):e0192159. [DOI:10.1371/journal.pone.0192159] [PMID] [PMCID]
19. Thomas D Schmittgen, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3:1101-8. [DOI:10.1038/nprot.2008.73] [PMID]
20. Wagner RM, Sivagnanam K, Clark WA, Peterson JM. Divergent relationship of circulating CTRP3 levels between obesity and gender: a cross-sectional study. PeerJ. 2016;4:e2573. [DOI:10.7717/peerj.2573] [PMID] [PMCID]
21. Ban B, Bai B, Zhang M, Hu J, Ramanjaneya M, Tan BK, et al. Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: in vivo regulation of cartonectin by glucose. PloS one. 2014;9(11):e112931. [DOI:10.1371/journal.pone.0112931] [PMID] [PMCID]
22. Li X, Jiang L, Yang M, Wu Yw, Sun Jz, Sun Sx. CTRP3 improves the insulin sensitivity of 3T3-L1 adipocytes by inhibiting inflammation and ameliorating insulin signalling transduction. Endokrynol Pol. 2014;65(4):252-8. [DOI:10.5603/EP.2014.0034] [PMID]
23. Nishimoto H, Yamamoto A, Furukawa S, Wakisaka S, Maeda T. C1q/TNF‐related protein 3 expression and effects on adipocyte differentiation of 3T3‐L1 cells. Cell Biol Int. 2017;41(2):197-203. [DOI:10.1002/cbin.10674] [PMID]
24. Schmid A, Kopp A, Hanses F, Bala M, Müller M, Schäffler A. The novel adipokine C1q/TNF-related protein-3 is expressed in human adipocytes and regulated by metabolic and infection-related parameters. Exp Clin Endocrinol Diabetes. 2012;120(10):611-7. [DOI:10.1055/s-0032-1323803] [PMID]
25. Kwon MR, Cress E, Clark WA, Alamian A, Lu Y, Peterson JM. The adipokine C1q TNF related protein 3 (CTRP3) is elevated in the breast milk of obese mothers. PeerJ. 2018;6:e4472. [DOI:10.7717/peerj.4472] [PMID] [PMCID]
26. Qu H, Deng M, Wang H, Wei H, Liu F, Wu J, et al. Plasma CTRP-3 concentrations in Chinese patients with obesity and type II diabetes negatively correlate with insulin resistance. J Clin Lipidol. 2015;9(3):289-94. [DOI:10.1016/j.jacl.2015.03.006] [PMID]
27. Forouhi N, Saedisomeolia A, Djalali M, Eshraghian MR, Morshedzadeh N, Zabetian-Targhi F, et al. Serum C1q and tumor necrosis factor (TNF)-related protein 9 in women with Polycystic Ovary Syndrome. Diabetes Metab Syndr. 2016;10(2):S131-4. [DOI:10.1016/j.dsx.2016.03.012] [PMID]
28. Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. J Biomed Biotechnol. 2011;2011:197636. [DOI:10.1155/2011/197636] [PMID] [PMCID]
29. Deng W, Li C, Zhang Y, Zhao J, Yang M, Tian M, et al. Serum C1q/TNF-related protein-3 (CTRP3) levels are decreased in obesity and hypertension and are negatively correlated with parameters of insulin resistance. Diabetol Metab Syndr. 2015;7:33. [DOI:10.1186/s13098-015-0029-0] [PMID] [PMCID]
30. Wolf RM, Steele KE, Peterson LA, Magnuson TH, Schweitzer MA, Wong GW. Lower circulating C1q/TNF-related protein-3 (CTRP3) levels are associated with obesity: a cross-sectional study. PLoS One. 2015;10(7):e0133955. [DOI:10.1371/journal.pone.0133955] [PMID] [PMCID]
31. Zhang J, Zhang B, Cheng Y, Xu J. Low serum CTRP3 levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Cytokine. 2018;106:131-135. [DOI:10.1016/j.cyto.2017.10.023] [PMID]
32. Curat CA, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49(4):744-7. [DOI:10.1007/s00125-006-0173-z] [PMID]
33. Lin J, Liu Q, Zhang H, Huang X, Zhang R, Chen S, et al. C1q/Tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways. Oncotarget. 2017;8(47):82541-82557. [DOI:10.18632/oncotarget.19657] [PMID] [PMCID]
34. Weigert J, Neumeier M, Schaffler A, Fleck M, Scholmerich J, Schutz C, et al. The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett. 2005;579(25):5565-70. [DOI:10.1016/j.febslet.2005.09.022] [PMID]
35. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347-55. [DOI:10.1079/BJN20041213] [PMID]
36. Hwang YC, Oh SW, Park SW, Park CY. Association of serum C1q/TNF-Related Protein-9 (CTRP9) concentration with visceral adiposity and metabolic syndrome in humans. Int J Obes. 2014;38(9):1207-12. [DOI:10.1038/ijo.2013.242] [PMID]
37. Wang J, Hang T, Cheng X-m, Li D-m, Zhang Q-g, Wang L-j, et al. Associations of C1q/TNF-related protein-9 levels in serum and epicardial adipose tissue with coronary atherosclerosis in humans. Biomed Res Int. 2015;2015:971683. [DOI:10.1155/2015/971683] [PMID] [PMCID]
38. Wolf RM, Steele KE, Peterson LA, Zeng X, Jaffe AE, Schweitzer MA, et al. C1q/TNF-related protein-9 (CTRP9) levels are associated with obesity and decrease following weight loss surgery. J Clin Endocrinol Metab. 2016;101(5):2211-7. [DOI:10.1210/jc.2016-1027] [PMID] [PMCID]
39. Li YX, Run L, Shi T, Zhang YJ. CTRP9 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and migration via TGF-β1/ERK1/2 signaling pathway. Biochem Biophys Res Commun. 2017;490(4):1319-1325. [DOI:10.1016/j.bbrc.2017.07.020] [PMID]
40. Moradi N, Fadaei R, Emamgholipour S, Kazemian E, Panahi G, Vahedi S, et al. Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PloS one. 2018;13(1):e0192159. [DOI:10.1371/journal.pone.0192159] [PMID] [PMCID]
41. Li J, Zhang P, Li T, Liu Y, Zhu Q, Chen T, et al. CTRP9 enhances carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. Biochem Biophys Res Commun. 2015;458(4):890-5. https://doi.org/10.1016/j.bbrc.2015.02.054 [DOI:10.1016/j.bbrc.2020.06.028] [PMID]
42. Zhang P, Huang C, Li J, Li T, Guo H, Liu T, et al. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation. Mol Cell Biochem. 2016;417(1-2):67-74. [DOI:10.1007/s11010-016-2714-1] [PMID]
43. Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes. 2005;29(1):146-50. [DOI:10.1038/sj.ijo.0802839] [PMID]