Volume 9, Issue 3 (Vol.9 No.3 Oct 2020)                   rbmb.net 2020, 9(3): 264-269 | Back to browse issues page


XML Print


Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India.
Abstract:   (3274 Views)
Background: Studying protein-protein and protein-DNA interactions are prerequisites for the identification of function and mechanistic role of various proteins in the cell. Protocols for analyzing DNA-based Protein-Protein and Protein-DNA interactions are complicated and need to be simplified for efficient tracking of binding capabilities of various proteins to specific DNA molecules. Here, we demonstrated a simple yet efficient protocol for the identification of DNA coating-based Protein-DNA interaction using antibody-mediated immunodetection.

Methods: Briefly, we have coated specific DNA in the microtiter plate followed by incubating with protein lysate. Specific protein-DNA and/or protein-protein bind with DNA interactions are identified using specific fluorophore-conjugated antibodies. Antibodies are used to detect a protein that is bound to the DNA.

Results: Fluorescent-based detection identifies the specific interaction between Protein-DNA with respect to coated DNA fragments. The protocol uses indirect conjugated antibodies and hence the technique is sensitive for effective identification of Protein-DNA interactions.

Conclusions: Based on the results we conclude that the demonstrated protocol is simple, efficient and sensitive for identification of Protein-DNA interactions.
Full-Text [PDF 864 kb]   (1589 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/05/30 | Accepted: 2020/06/10 | Published: 2020/12/1

References
1. Fried MG. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis. 1989;10(5-6):366-76. [DOI:10.1002/elps.1150100515] [PMID]
2. Garner M, Revzin A. The use of gel electrophoresis to detect and study nucleic acid-protein interactions. Trends in Biochemical Sciences. 1986;11:395-396. [DOI:10.1016/0968-0004(86)90149-0]
3. Carey J. Gel retardation. Methods Enzymol. 1991;208:103-17. [DOI:10.1016/0076-6879(91)08010-F]
4. Lane D, Prentki P, Chandler M. Use of gel retardation to analyse protein-nucleic acid interactions. Microbiol Rev. 1992;56(4):509-528. [DOI:10.1128/MR.56.4.509-528.1992] [PMID] [PMCID]
5. Fried MG, Garner MM. The electrophoretic mobility shift assay (EMSA) for detection and analysis of protein-DNA interactions. Nucleic Acid Electrophoresis. 1998:239-271. [DOI:10.1007/978-3-642-58924-9_10]
6. Xian J, Harrington MG, Davidson EH. DNA-protein binding assays from a single sea urchin egg: a high-sensitivity capillary electrophoresis method. Proc Natl Acad Sci U S A. 1996;93(1):86-90. [DOI:10.1073/pnas.93.1.86] [PMID] [PMCID]
7. Jing D, Agnew J, Patton WF, Hendrickson J, Beechem JM. A sensitive two color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels. Proteomics. 2003;3(7):1172-80. [DOI:10.1002/pmic.200300438] [PMID]
8. Kristie TM, Roizman B. Alpha 4, the major regulatory protein of herpes simplex virus type 1, is stably and specifically associated with promoter-regulatory domains of alpha genes and of selected other viral genes. Proc Natl Acad Sci U S A. 1986;83(10):3218-22. [DOI:10.1073/pnas.83.10.3218] [PMID] [PMCID]
9. Simonet T, Zaragosi LE, Philippe C, Lebrigand K, Schouteden C, Augereau A, et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. cell research. 2011;21:1028-1038. [DOI:10.1038/cr.2011.40] [PMID] [PMCID]
10. Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, et al. Human telomeric proteins occupy selective interstitial sites. Cell Res. 2011;21(7):1013-27. [DOI:10.1038/cr.2011.39] [PMID] [PMCID]
11. Pandey P, Hasnain S, and Ahmad S. (2019). "Protein-DNA interactions," in Encyclopedia of Bioinformatics and Computational Biology, (Academic Press), 142-154. [DOI:10.1016/B978-0-12-809633-8.20217-3]
12. Braun P, Gingras AC. History of protein-protein interactions: from egg-white to complex networks. Proteomics. 2012;12:1478-98. [DOI:10.1002/pmic.201100563] [PMID]
13. Datta C, Jha RK, Ahmed W, Ganguly S, Ghosh S, Nagaraja V. Physical and functional interaction between nucleoid‐associated proteins HU and Lsr2 of Mycobacterium tuberculosis: altered DNA binding and gene regulation. Mol Microbiol. 2019;111(4):981-994. [DOI:10.1111/mmi.14202] [PMID]
14. Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648 [DOI:10.1155/2014/147648] [PMID] [PMCID]
15. Riggs AD, Bourgeois S, Newby RF, Cohn M. DNA binding of the lac repressor. J Mol Biol. 1968;34(2):365-8. [DOI:10.1016/0022-2836(68)90261-1]
16. Riggs AD, Bourgeois S, Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970;53(3):401-17. [DOI:10.1016/0022-2836(70)90074-4]
17. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci. U S A. 1979;76(9):4350-4. [DOI:10.1073/pnas.76.9.4350] [PMID] [PMCID]
18. Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols. 2007;2:1849-1861. [DOI:10.1038/nprot.2007.249] [PMID] [PMCID]
19. Hoffman BG, Jones SJ. Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol. 2009;201(1):1-13. [DOI:10.1677/JOE-08-0526] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.