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Abstract

Background: Transforming growth factor-§1 (TGF-B1) has been found to play a crucial role in early central
nervous system development. Several studies have illustrated decreased TGF-B1 levels in sera and brains of autistic
children. Two point mutations in the TGF-p1 signal peptide at 869T/C and 915G/C have been reported to influence
TGF-B1 expression. The aim of the present study was to investigate the correlation of TGF-B1 polymorphisms and
their haplotypes with autism.

Methods: This study was performed on 39 autistic patients and 35 age- and sex-matched normal controls in an
Iranian population, using the sequence specific primed-polymerase chain reaction (PCR-SSP) technique. Patients
were divided into mild-to-moderate and severe groups according to the childhood autism rating scale.

Results: No significant differences were observed for allele, genotype, or haplotype frequencies between the autistics
and controls. Only a slight difference was observed in GC25 between the controls and all children with autism.
Conclusion: Thus, these results indicate that the polymorphisms in TGF-B1 gene may not play an important role in
the development of autism.
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Introduction

Autism  spectrum  disorders  (ASDs) are
neurodevelopmental  disorders characterized by
difficulties in social interactions and communication,
and repetitive and stereotyped patterns of behaviors

system abnormalities and autism spectrum disorders.
These abnormalities include inappropriate immune
regulation resulting in abnormalities in the functional
immune cell subsets and autoimmunity such as

and interests with various levels of severity occurring
before three years of age (1). Although the exact
cause of these disorders remains poorly understood,
immunological factors have been proposed to have a
major role in their pathophysiology (2). Several
studies have shown a correlation between immune

autoantibodies generated against the central nervous
system (CNS) (2-4). It is assumed that aberrant
immune  responses  during  the  critical
neurodevelopmental period may result in the
development of neurological disorders (5). The
plausibility of this hypothesis with regard to immune
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system abnormalities in autistics has been derived
from the pivotal role of the immune system in
neurodevelopment and the ability of these alterations
to influence the CNS (5). Both the immune and
nervous systems are highly evolved systems that
cross talk via cytokines and neuro-mediators such as
neuropeptides (6, 7).

Transforming growth factor-B1 (TGF-B1) is an
important immune regulator critical for immune
homeostasis. Accumulating evidence suggests that
TGFB1 has a crucial regulatory role in CNS
development and potential implications for
neurogenesis in a variety of TGF-B1-related CNS
diseases (5, 8). TGF-1 knockout mice were shown
to have severe cortical developmental impairment
with pervasive increased neuronal cell death and
microgliosis  complication  (9).  Furthermore,
decreased levels of TGF-1 in serum have been
observed in autistic children (10, 11). These reports
suggest that immune system aberrations may lead to
abnormal immune responses, autoimmunity, or
adverse neuroimmune interactions during brain
development.

The human TGF-B1 gene, located on
chromosome 19¢13.1-3, contains five described
polymorphisms: two in the promoter region at
positions 800 G/A and 509 C/T and three located in
the coding sequence at positions 869 T/C, 915 G/C
and 1628 C/A (12-15). The point mutations at
positions 869 T/C and 915 G/C result in amino acid
substitutions in the signal peptide at codons 10
(Leu/Pro) and 25 (Arg/Pro), respectively. It has been
found that these polymorphisms genetically control
TGF-B1 serum concentrations. Moreover, the
presence of leucine and arginine at codons 10 and 25
determines the high-producer genotype, while proline
at both codons is associated with relatively lower
levels of TGF-f1. However, there are some
conflicting  results  conceming  codon 10
polymorphisms. Some studies demonstrated that
leucine is a high producer (14), while others (15, 16)
reported that proline at codon 10 results in the high-
producer genotype. However, there is no controversy
that the polymorphisms at codons 10 and 25 affect
TGF-B1 production. In the present study, two coding
polymorphisms within exon 1 of the TGF-B1 gene at
positions 869 T/C and 915 G/C were analyzed to
determine the prevalence of particular TGF-B1
genotypes in autistic children. Aberrations in immune

system regulation or impairment in immune
homeostasis may result in chronic inflammation,
autoimmunity, or inappropriate immune responses.
These may cause inflammation in the CNS or brain
leading to altered neurodevelopment. In addition,
TGF-B1 is a potent immunosuppressive cytokine as
well as a crucial regulator in brain development (5).
Furthermore, it is believed that TGF-B1 protects the
brain  from neuronal  degeneration  during
inflammation in the CNS (17-19). Therefore, TGF-
B1 has been widely recognized as a cytokine that
responds to brain injury. Several studies have
demonstrated altered TGF-B1 levels in brains and
sera of autistics (3, 11). It has also been shown that the
509C/T and 869T/C point mutations in TGF-1 lead
to altered TGF-B1 production and/or activity, which
may modulate an individual's susceptibility to autism.
Given the key role of these polymorphisms in
cytokine production and the low TGF-1 serum
levels in autistics, we investigated whether TGF-31
polymorphisms are risk factors for the development
of autism. Our research focused on point mutations
involved in TGF-B1 production; namely alleles T
(leucine) and C (proline) at codon 10 and alleles G
(arginine) and C (proline) at codon 25.

Materials and Methods

Patients

Thirty-nine autistic children, aged 7-13, were included
in this study. The Childhood Autism Rating Scale
(CARS) was used to confirm the diagnosis of autism
and assess its severity. A 295 cut-off point was
employed to diagnose autism. Scores of 30-36.5 and
37-60 were classified as mild-to-moderate and severe,
respectively. In addition, criteria from the Diagnostic
and Statistical and Manual of Mental Disorders 4"
Edition (DSM-IV) were also used to differentiate
autistic children with CARS > 30 from other
developmental disorders e.g. Rett, Asperger's, and
childhood disintegrative disorder (20). The control
group included 35 age-matched, healthy children with
IQs of 90-110. None of the children in the control
group had neurological or psychological deficits.
Informed consents were obtained from parents in both
groups. The study design was in accordance with the
tenets of the Helsinki Declaration, and was approved
by the Research Ethics Committee of Azad University
of Medical Sciences, Mashhad Branch. Demographic
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data, previous medical histories, and clinical signs and
symptoms of all children were also obtained.

PCR Method
Peripheral blood was obtained and genomic DNA
extracted by the salting-out method as described
previously (21). To determine TGF-B1 genotyping at
codons 10 (T/C) and 25 (G/C), sequence-specific
primed-polymerase chain reaction (PCR-SSP) was
performed. The following primers were used to
amplify codons 10 (T/C) and 25 (G/C):
CGGGCTGCGGCTGCTGCC-3'(T10),
5- CGGGCTGCGGCTGCTGCT -3/ (C10),
5“TTTCGTTGTGGGTTTCCACCATTAG-3
(common codon 10) and
-GTGCTGACGCCTGGCCG-3'(G25),
5- GTGCTGACGCCTGGCCC -3 (C25),
5-GGCTCCGGTTCTGCACTC-3" (common codon
25). The glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) gene was amplified as an intemal control
for the genomic DNA preparation. The optimized
PCRs were performed in 20 pl reactions containing 50
ng of genomic DNA, 10 nmol of specific and control
primer mixes, 200 M of each deoxynucleotide
triphosphate  (ANTP), 1x ammonium-sulfate-based
PCR buffer, 1.5 mM MgCI2, 5% DMSO, and 0.5 U
of HS-Tag DNA polymerase (Parstous, Iran).
Amplifications were performed on a Corbett Research
Thermocycler (Corbett, Australia), using the following
conditions: initial denaturation at 94 °C for 10 min
followed by 35 cycles of 30 s at 94 °C, 20 s at 65°C for
869T/C and 30 s at 63 °C for 915G/C, 30 s at 72 °C
and a final extension at 72 °C for 5 min. The PCR
products were analyzed in 2% agarose gel stained with
green viewer and visualized under UV.

Statistical analysis

All statistical analyses were performed using SPSS
version 11.5 (SPSS Inc. Chicago, IL, USA). Genotype
and allele frequencies were compared between the
study groups by o test, Fisher's exact test and odds
ratios (OR) with 95% confidence intervals (Cls).
Demographic and clinical data between groups were
compared by »? test and Student's t-test. A p-value less
than 0.05 was considered statistically significant.

Results
The demographic and clinical characteristics of all
groups are summarized in Table 1. The genotype and
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allele frequencies for the TGF-B1 polymorphisms in
the autistics, which were divided into mild-to-moderate
and severe, and controls are shown in Table 2. The
genotype distribution among the autistics and controls
was in Hardy-Weinberg equilibrium. In this study,
two polymorphic positions within the TGF-B1 codon
10 T/C and 25 G/C were analyzed. No significant
differences were observed in the distribution of TGF-
B1 genotypes and allele frequencies between patients
and controls. Only a slight difference was observed in
GC25 hetween the controls (n = 35) and all children
with autism (n = 39, p = 0.082). In addition, to
investigate whether any specific haplotypes would
relate to the development of autism, all possible
haplotypes composed of these polymorphisms were
examined (Table 3). The result showed that CC/CC
(low producer) haplotype was not detected in any
group. Moreover, the TC/CC low producer was
detected in only one subject in the control group. The
major haplotypes in both groups were those
polymorphisms considered as high producers (TT/GG
and TC/GG). Furthermore, no significant differences
in TGF-B haplotypes were identified between autistic
patients and controls (Table 3).

Discussion
In this study we focused on point mutations of alleles
that were reported to be involved in TGF-B1
expression; namely alleles T (leucine) and C (proline)
at codon 10 and alleles G (arginine) and C (proline) at
codon 25. No significant differences were found in the
distributions of TGF-B1 alleles, genotypes, or
haplotype frequencies between autistics and controls.
Over the past decade, numerous reports have noted
abnormalities or alterations of immune system activity
in autistics; these include increased serum levels of
inflammatory cytokines and factors such as tumor
necrosis factor-o (TNF-o), interferon-y (IFN-y) and
high sensitivity C-reactive protein (hsCRP) (22-25). It
has been reported that autoantibodies against brain and
CNS proteins exists in 30-70% of autistic patients (4,
26-28). In addition, decreases in lymphocytes and T
cell mitogen responses, and an imbalance of serum
immunoglobulin levels have been reported in a
significant number of autistic children (2, 29). Overall,
the data suggests that immune dysfunction and
excessive inflammation play important
pathophysiologic  roles in  autism  disorders.
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Table 1. Comparison of demographic and clinical data as well as abnormalities in CT-scans between autism (n = 39) and control (n = 35) groups

(*Not significant).
Variables Autism group Control group p-value

Mean age (Years) + SD 8.54 +£1.68 7.9+31 NS
Gender (boys/girls) 25/14 20/15 NS
BMI (kg/m2) + SD 22.85+£2.19 21.14£2.45 NS
Age of diagnosis 2.8 - -

Severe 29 (74.4%) - -

Severity (%)

Mild/moderate 10 (25.6%) - -
Obstetric complications (%) 4 (25%) 6 (37.5%) NS
Another disease (%) 8 (20.5%) 2 (5.7%) NS
Family history (%) 8 (20.5%) 0 (0.0%) 0.008
Epilepsy (%) 12 (30.8%) 0 (0.0%) 0.001
Hypoxia (%) 3 (7.7%) 0 (0.0%) NS
Abnormal CT-scan (%) 1 (2.6%) 0 (0.0%) NS

Table 2. Genotype and allele frequencies for the TGF31 Codon 10 and 25 polymorphisms in autistic patients and controls (*Fisher’s exact test).

. OR
= = 0, *
Genotype Autism cases(n=39) Controls (n=35) (%) (p) ORp (C1 95%)
Mild/ Moderate Severe
10 (%) 29 (%)
Codon 10 T>C
TT (%) 6 (60%) 14 (48.3%) 11 (31.4%) 1.0 (reference)
TC (%) 3 (30%) 10 (34.5%) 17 (48.6%) (0.51) 0.162 0.324 (0.06- 1.57)
CC (%) 1 (10%) 5 (17.2%) 7 (20%) 0.258 0.262 (0.02- 2.66)
¥ HW (p) 0.4 (0.52) 1.62 (0.2) 0.008 (0.92)
Allele
T (%) 15 (75 %) 38 (65.5%) 39 (55.7%) (0.26) 1.0 (reference)
C (%) 5 (25 %) 20 (34.5%) 31 (44.3%) ' 0.086 0.435 (0.16- 1.12)
Codon 25 G>C
GG (%) 7 (70%) 20 (69%) 30 (85.7%) 1.0 (reference)
GC (%) 2 (20%) 9 (31%) 4 (11.4%) (0.12) 0.082 3.05 (0.86- 10.73)
CC (%) 1 (10%) 0 (0%) 1 (2.9%) 0.942 1.11 (0.06-18.64)
¥2 HW (p) 1.40(0.23) 0.97 (0.32) 2.56 (0.10)
Allele
G (%) 16 (80%) 49 (84.48%) 64 (91.42%) 027 1.0 (reference)
C (%) 4 (20%) 9 (15.51%) 6 (8.57%) ' .099 2.667 (0.83- 8.55)
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Table 3. Distribution of TGF-B1 (codon 10 T/C and codon 25 G/C) haplotypes among autistic patients and healthy controls.

Production level Haplotype Control Mclzﬂilelfz/;\te Severe 1 (p)
High TTIGG 11 (31.4%) 5 (50%) 8 (27.6%)
TCIGG 14 (40%) 2 (20%) 8 (27.6%)
TT/IGC 0 (0.0%) 0 (0.0%) 6 (20.7%)
Intermediate TC/GC 2 (5.7%) 1 (10%) 2 (6.9%) 7.14 (0.128)
CCIGG 5 (14.3%) 0 (0.0%) 4 (13.8%)
TT/ICC 0 (0.0%) 1 (10%) 0 (0.0%)
TC/CC 1 (2.9%) 0 (0.0%) 0 (0.0%)
Low CCIGC 2 (5.70%) 1 (10%) 1(3.4%)
cc/cc 0 (0.0%) 0 (0.0%) 0 (0.0%)

TGF-B1 is considered to be one of the critical
immunosuppressive cytokines in immune homeostasis
and T cell activated unresponsiveness (30-32).
Furthermore, evidence suggests that during the brain
development, glial and neuronal cells produce TGF-
1, which plays a crucial role in the regulation of earty
CNS development such as astrocyte differentiation
(33, 34), synaptogenesis (35), neuronal migration in the
cerebral cortex (36), neuronal survival (37, 38),
neuronal death, microgliosis control (9), wound
healing, and immunosuppression (39).

Recently, in accordance with several other
publications, we found (unpublished data) that serum
levels of TGF-B1 are significantly lower in autistics
than in age and gender-matched controls (10, 11).
These findings are consistent with the hypothesis that
reduced levels of this cytokine may lead to an
inappropriate regulation of immune responses as well
as the development of neuroinflammation disorders
such as autism spectrum disorders. However, it is not
yet demonstrated that reduction of TGF-f1 is a
primary cause of autism or simply a secondary
reflection of the disorder.

Given the key role of TGF-B1 in brain development
and inflammation, we investigated the association
between TGF-B1 gene polymorphisms and autism.
Consequently, estimated alleles, genotypes, and
haplotypes frequencies were compared between
autistic patients and normal controls in an Iranian
population. We found no association between the
TGF-B1 gene polymorphisms and autism. It is well
established that polymorphisms at 509C/T and 869T/C
influence TGF-B1 production and resultant serum
levels. It has also been demonstrated that the TT/GG
and TC/GG haplotypes are associated with high TGF-
B1 expression. The TC/GC, CC/GG, and TT/GC
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haplotypes are associated with intermediate expression,
and the CC/GC, CC/CC, TT/CC and TC/CC
haplotypes are known as low expressors. Based on the
relatively low TGF-B1 expression in our study
(unpublished data), we predicted that the subjects in
our study with the CC/GC, CC/CC, TT/CC, TC/CC
polymorphisms would be low expressors. Surprisingly
the CC/CC and TC/CC polymorphisms were not
detected in autistics, and only the TC/CC
polymorphism was detected in one control subject.
Our results also demonstrated that the dominant
haplotypes in autistics were TT/GG and TC/GG,
which contribute to high and intermediate expressors,
respectively. Therefore, it seems difficult to assess only
the influence of different genotype variants for the
TGF-B1 serum levels in autistics. On the other hand,
considering the relatively high rates of autoimmunity
and inflammatory diseases in autistics and their
families (40), decreased TGF-B1 levels in sera and
brains may be explained by other factors such as
defects in regulatory T cell development. Regulatory T
cells are responsible for TGF1 production, self-
tolerance, and immune homeostasis.

In conclusion, we found no association between
autism and TGF-B1 gene polymorphisms in codons 10
and 25. Considering the influence of polymorphismsin
TGF-B1 expression, further studies may be required to
determine the effects of decreased levels of TGF-S1.
More importantly, due to the small sample size, we
believe the findings of the present study should be
tested with a larger number of patients. Undoubtedly,
more findings should be taken into account in the
assessment of autism and these will help us to
understand the underlying clinical and molecular
mechanisms of the disorder.
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