Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 183-196 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi A, Balizadeh Karami A R, Dehghan Mashtani V, Sahraei T, Bandani Tarashoki Z, Khattavian E, et al . Evaluation of Oxidative Stress, Apoptosis, and Expression of MicroRNA-208a and MicroRNA-1 in Cardiovascular Patients. rbmb.net. 2021; 10 (2) :183-196
URL: http://rbmb.net/article-1-645-en.html
Abadan Faculty of Medical Sciences, Abadan, Iran & Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran.
Abstract:   (1034 Views)
Background: MicroRNA expression signature and reactive oxygen species (ROS) production have been associated with the development of cardiovascular diseases (CVDs). This study aimed to evaluate oxidative stress, inflammation, apoptosis, and the expression of miRNA-208a and miRNA-1 in cardiovascular patients.

Methods: The study population included four types of patients (acute coronary syndromes (ACS), myocardial infarction (MI), arrhythmia, and heart failure (HF)), with 10 people in each group, as well as a control group. Quantitative real-time PCR was performed to measure mir-208 and miR-1 expression, the mRNAs of inflammatory mediators (TNFα, iNOS/eNOS), and apoptotic factors (Bax and Bcl2). XOX, MDA, and antioxidant enzymes (CAT, SOD, and GPx) were measured by ZellBio GmbH kits by an ELISA Reader.

Results: The results showed significant decreases in the activity of antioxidant enzymes (CAT, SOD, and Gpx) and a significant increase in the activity of the MDA and XOX in cardiovascular patients. Significant increases in IL-10, iNos, iNOS / eNOS, and TNF-α in cardiovascular patients were also observed. Also, a significant increase in the expression of miR-208 (HF> arrhythmia> ACS> MI) and a significant decrease in the expression of miR-1 (ACS> arrhythmia> HF> MI) were found in all four groups in cardiovascular patients.

Conclusions: The results showed increases in oxidative stress, inflammation, apoptotic factors, and in the expression of miR-208a in a variety of cardiovascular patients (ACS, MI, arrhythmia, and HF). It is suggested that future studies determine the relationships that miR-1, miR-208, and oxidative stress indices have with inflammation and apoptosis.
Full-Text [PDF 364 kb]   (465 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/01/23 | Accepted: 2021/02/15 | Published: 2021/08/26

1. Hinton W, McGovern A, Coyle R, Han TS, Sharma P, Correa A, et al. Incidence and prevalence of cardiovascular disease in English primary care: a cross-sectional and follow-up study of the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). BMJ Open. 2018;8(8):e020282. [DOI:10.1136/bmjopen-2017-020282] [PMID] [PMCID]
2. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?. Nutrients. 2019;11(9):2090. [DOI:10.3390/nu11092090] [PMID] [PMCID]
3. Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol. 2019;74(20):2529-2532. [DOI:10.1016/j.jacc.2019.10.009] [PMID]
4. Chan MY, Du X, Eccleston D, Ma C, Mohanan PP, Ogita M, et al. Acute coronary syndrome in the Asia-Pacific region. Int J Cardiol. 2016;202:861-9. [DOI:10.1016/j.ijcard.2015.04.073] [PMID]
5. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528.
6. Khurshid S, Choi SH, Weng LC, Wang EY, Trinquart L, Benjamin EJ, et al. Frequency of Cardiac Rhythm Abnormalities in a Half Million Adults. Circ Arrhythm Electrophysiol. 2018;11(7):e006273. [DOI:10.1161/CIRCEP.118.006273] [PMID] [PMCID]
7. Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid Med Cell Longev. 2019;2019:7092151. [DOI:10.1155/2019/7092151] [PMID] [PMCID]
8. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-1131. [DOI:10.1056/NEJMoa1707914] [PMID]
9. Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease. Apoptosis. 2009;14(4):536-48. [DOI:10.1007/s10495-008-0302-x] [PMID]
10. Bennett MR. Apoptosis in the cardiovascular system. Heart. 2002;87(5):480-487. [DOI:10.1136/heart.87.5.480] [PMID] [PMCID]
11. Zampetaki A, Mayr M. MicroRNAs in Vascular and Metabolic Disease. Circ Res. 2012;110(3):508-22. [DOI:10.1161/CIRCRESAHA.111.247445] [PMID]
12. Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, et al. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2013;2:e01323. [DOI:10.7554/eLife.01323] [PMID] [PMCID]
13. Ai J, Zhang R, Gao X, Niu HF, Wang N, Xu Y, et al. Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc Res. 2012;95(3):385-93. [DOI:10.1093/cvr/cvs196] [PMID]
14. Li J, Dong X, Wang Z, Wu J. MicroRNA-1 in Cardiac Diseases and Cancers. Korean J Physiol Pharmacol. 2014;18(5):359-363. [DOI:10.4196/kjpp.2014.18.5.359] [PMID] [PMCID]
15. Vagner Oliveira-Carvalho VOC, and Edimar Alcides Bocchi. The Emerging Role of miR-208a in the Heart. DNA Cell Biol. 2013;32(1):8-12. [DOI:10.1089/dna.2012.1787] [PMID]
16. Callis T, Pandya K, Seok H, Tang R-H, Tatsuguchi M, Huang Z-P, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772-86. [DOI:10.1172/JCI36154] [PMID] [PMCID]
17. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499-506. [DOI:10.1161/CIRCGENETICS.110.957415] [PMID]
18. Li M, Duan L, Li Y, Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci. 2019;233:116440. [DOI:10.1016/j.lfs.2019.04.066] [PMID]
19. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384-388. [DOI:10.1038/nature11993] [PMID]
20. Wang L, Yuan Y, Li J, Ren H, Cai Q, Chen X, et al. MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress Chaperones. 2015;20(3):411-20. [DOI:10.1007/s12192-014-0565-9] [PMID] [PMCID]
21. Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int J Mol Sci. 2020;21(1):358. [DOI:10.3390/ijms21010358] [PMID] [PMCID]
22. Bayatiani MR, Ahmadi A, Aghabozorgi R, Seif F. Concomitant Up-Regulation of Hsa- Mir-374 and Down-Regulation of Its Targets, Gsk-3β and Apc, in Tissue Samples of Colorectal Cancer. Rep Biochem Mol Biol. 2021;9(4):408-416. [DOI:10.52547/rbmb.9.4.408] [PMID] [PMCID]
23. Shaker O, Mahfouz H, Salama A, Medhat E. Long Non-Coding HULC and miRNA-372 as Diagnostic Biomarkers in Hepatocellular Carcinoma. Rep Biochem Mol Biol. 2020;9(2):230-240 [DOI:10.29252/rbmb.9.2.230] [PMID] [PMCID]
24. Liu YH, Carretero OA, Cingolani OH, Liao TD, Sun Y, Xu J, et al. Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289(6):H2616-23. [DOI:10.1152/ajpheart.00546.2005] [PMID]
25. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res. 2000;87(3):241-7. [DOI:10.1161/01.RES.87.3.241] [PMID]
26. Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 2007;117(9):2692-701. [DOI:10.1172/JCI29134] [PMID] [PMCID]
27. Bostjancic E, Zidar N, Stajer D, Glavac D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115(3):163-9. [DOI:10.1159/000268088] [PMID]
28. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537-47. [DOI:10.1161/CIRCULATIONAHA.111.030932] [PMID] [PMCID]
29. Gidlöf O, Smith J, Miyazu K, Gilje P, Spencer A, Blomquist S, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013;13:12. [DOI:10.1186/1471-2261-13-12] [PMID] [PMCID]
30. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genomics. 2013;6:16. [DOI:10.1186/1755-8794-6-16] [PMID] [PMCID]
31. Li YD, Hong YF, Yusufuaji Y, Tang BP, Zhou XH, Xu GJ, et al. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol Med Rep. 2015; 12(3) 3243-3248. [DOI:10.3892/mmr.2015.3831] [PMID] [PMCID]
32. Sygitowicz G, Tomaniak M, Błaszczyk O, Kołtowski Ł, Filipiak KJ, Sitkiewicz D. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis. 2015;108(12):634-42. [DOI:10.1016/j.acvd.2015.07.003] [PMID]
33. Sun T, Zhang L, Li X, Chen F, Li Y, Ma X, et al. MicroRNA-1 and Circulating Microvesicles Mediate the Protective Effects of Dantonic in Acute Myocardial Infarction Rat Models. Front Physiol. 2018;9:664. [DOI:10.3389/fphys.2018.00664] [PMID] [PMCID]
34. Li S, Sun YN, Zhou YT, Zhang CL, Lu F, Liu J, et al. Screening and identification of microRNA involved in unstable angina using gene-chip analysis. Exp Ther Med. 2016;12(4):2716-2722. [DOI:10.3892/etm.2016.3646] [PMID] [PMCID]
35. Banerjee J, Khanna S, Bhattacharya A. MicroRNA Regulation of Oxidative Stress. Oxid Med Cell Longev. 2017;2017:2872156. [DOI:10.1155/2017/2872156] [PMID] [PMCID]
36. Olsson KA, Harnek J, Ohlin AK, Pavlidis N, Thorvinger B, Ohlin H. No increase of plasma malondialdehyde after primary coronary angioplasty for acute myocardial infarction. Scand Cardiovasc J. 2002;36(4):237-40. [DOI:10.1080/14017430260180409] [PMID]
37. Raghuvanshi R, Kaul A, Bhakuni P, Mishra A, Misra MK. Xanthine oxidase as a marker of myocardial infarction. Indian J Clin Biochem. 2007;22(2):90-92. [DOI:10.1007/BF02913321] [PMID] [PMCID]
38. Polidori MC, Savino K, Alunni G, Freddio M, Senin U, Sies H, et al. Plasma lipophilic antioxidants and malondialdehyde in congestive heart failure patients: relationship to disease severity. Free Radic Biol Med. 2002;32(2):148-52. [DOI:10.1016/S0891-5849(01)00782-1]
39. Yin Y, Han W, Cao Y. Association between activities of SOD, MDA and Na(+)-K(+)-ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia. Hellenic J Cardiol. 2019;60(6):366-371. [DOI:10.1016/j.hjc.2018.04.003] [PMID]
40. Pastori D, Pignatelli P, Farcomeni A, Nocella C, Carnevale R, Violi F. Aging-related decline of glutathione peroxidase 3 and risk of cardiovascular events in patients with atrial fibrillation. 2016;5(9):e003682. [DOI:10.1161/JAHA.116.003682]
41. Negreva MN, Penev AP, Georgiev S, Aleksandrova AA. Paroxysmal atrial fibrillation: dynamics of the main antioxidant enzymes--superoxide dismutase and catalase. Folia Med (Plovdiv). 2014;56(2):96-101. 41. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J. Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation. 2000;101(1):33-9. [DOI:10.1161/01.CIR.101.1.33] [PMID]
42. Lenaerts I, Driesen RB, Hermida N, Holemans P, Heidbüchel H, Janssens S, et al. Role of nitric oxide and oxidative stress in a sheep model of persistent atrial fibrillation. Europace. 2013;15(5):754-60. [DOI:10.1093/europace/eut012] [PMID]
43. Engedal N, Žerovnik E, Rudov A, Galli F, Olivieri F, Procopio AD, et al. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxidative Medicine and Cellular Longevity. 2018;2018:1-16. [DOI:10.1155/2018/4968321] [PMID] [PMCID]
44. Wan Y, Cui R, Gu J, Zhang X, Xiang X, Liu C, et al. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma. Oxid Med Cell Longev. 2017;2017:5189138. [DOI:10.1155/2017/5189138] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb