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Abstract

Background: Dilated cardiomyopathy (DCM) is a progressive heart condition characterized by left
ventricular chamber enlargement associated with systolic heart failure and prolonged action potential
duration. Genetic variations in genes that encode cytoskeleton, sarcomere, and nuclear envelope
proteins are responsible for 45% of cases. In our study, we focused on a pedigree with familial DCM
to decipher the potential genetic cause(s) in affected members developing arrhythmia, end-stage heart
failure, and sudden death.

Methods: Whole-exome sequencing (WES) was exploited for a 27-year-old heart-transplanted female
as the proband, and the derived data were filtered using the standard pipelines.

Results: A 57-nucleotide deletion (c.405 _422+39del) in the desmoplakin gene (DSP)
(NM_004415.4) was identified as a novel pathogenic variant. Familial segregation analysis indicated
that this variant is present in clinically affected members and absent in unaffected members.
Conclusions: It seems that the detected variant induces intron retention, resulting in a premature stop
codon in intron 3 of DSP leading to production of a truncated, nonfunctional protein. Additionally, it
can trigger a nonsense-mediated mMRNA decay pathway associated with inhibition of protein
production. The present study results illustrated that a novel deletion in DSP can cause DCM in an
Iranian family.
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Introduction

Dilated cardiomyopathy (DCM) is a
serious myocardial disorder in which
myocardium becomes weak and stretched,
so that systolic function becomes impaired
because of the enlargement and insufficient
contraction of ventricles, a condition that
leads to heart failure, arrhythmia, and sudden

death (1-3). The prevalence of DCM was reported
as 1 out of 2500 in 1989, but was estimated at 1
out of 250 based on later findings (4). The disease
is more common in men than in women. It is one
of the most common causes of heart failure and
heart  transplantation worldwide 5).
Approximately 45% of DCM cases have a genetic
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etiology; however, pathogenic variations have
been found in only 30-40% of patients (6-8). It is
shown that genetic variations in more than 50
genes encoding constituents of the cytoskeleton,
sarcomere, nuclear membrane, and mitochondrial
proteins can cause DCM, indicating considerable
genetic heterogeneity in genetic cases of DCM (9-
11). Up to 90% of familial DCM cases follow an
autosomal dominant inheritance mode, and about
10% of cases may be inherited in an autosomal
recessive, X-linked recessive, or mitochondrial
pattern (12). DSP (MIM 125647) encodes a
desmosomal plaque component, desmoplakin,
and its variations have been attributed to a variety
of disorders related to heart muscle, hair, skin, and
tooth tissues (13). Taking advantage of whole-
exon sequencing (WES) technology and gene
annotation, a novel small deletion variant
(c.405_422+39del) was detected in DSP that may
underlie the pathogenesis of DCM, and the results
were validated by Sanger sequencing.

Materials and Methods

Case report

An lIranian family with autosomal dominant
familial DCM has been referred (Fig. 1). The
diagnosis of DCM was made for the proband
and the other affected members of the family by
investigating their detailed clinical histories,
physical examinations, and transthoracic
echocardiography. The proband (IV: 9), a
29-year-old female diagnosed with DCM at age
20, had received a heart transplant at age 27.
She had manifested the typical clinical features
of hereditary DCM, including left ventricular
enlargement, severely reduced systolic
function, and ejection fraction equal to 10-15%.
In addition, biochemical tests showed a
significant increase in pro-b-type natriuretic
peptide (NT-proBNP) concentration (equal to
16222 pg/ml). The exercise test had showed
low load, Vcoz, Vo2, Vg, Vi, HR, O2Pulse,
PETO2, PETCO2, Vo2 Is kg, normal RER, By,
Voo/WR, and high HRR, BR, VE/Vco2, Vd/Vt
and VO2a7/Vo parameters. She also had
experienced a spontaneous abortion.

Proband’s eldest sister (IV: 7) is a 31-year-old
female with DCM. Her NT-proBNP
concentration was 1742 pg/ml at its highest. On

echocardiography her left ventricular ejection
fraction (LVEF) was 45%. Proband’s other
sister (IV: 10) is a 22-year-old female who had
apparently normal findings in cardiac
evaluations. Proband’s mother (III: 3) was a 52-
year-old female with DCM. Her NT-proBNP
concentration was 3918 pg/ml at its highest. On
echocardiography her LVEF was 20% and she
died when she was 53 years old. Proband’s
mother uncle (Ill: 5) is a 34-year-old female
with DCM. Her NT-proBNP concentration was
4672 pg/ml, and on echocardiography her left
ventricle was severely enlarged and LVEF was
10-15%. Proband’s niece (V: 3) had suffered
from a cardiac malformation.

Ethical statement

This study was approved by the Ethics
Committee of Tehran University of Medical
Sciences. Written informed consents for genetic
investigation and publication of clinical
information were obtained from all study
participants.

Subjects

Available members of the pedigree were
enrolled in the present study. Two experienced
cardiologists comprehensively examined ten
family members. Peripheral venous blood
from the proband (IV: 9) and five appropriate
members with close relationships to the
proband (I11: 2, I1I: 5, IV: 5, IV: 7 and 1V: 10),
including two affected individuals (111: 5 and
IV: 7), was collected for the genetic study. All
medical records of healthcare, routine
physical, and fundus examinations were
collected.

Whole-exome sequencing

Genomic DNA was isolated from peripheral
venous blood cells using the Exgene™ Blood
SV DNA purification kit (GeneAll®, Korea).
DNA concentrations were determined on a
Thermo Scientific™ Nanodrop 2000. Exome
sequencing was performed on the proband
(IV: 9) by CeGaT GmbH (Tibingen,
Germany). A paired-end DNA library was
constructed, and the whole-exome capturing
was performed using the Twist Human Core
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Exome Kit. After quality assessment, the
captured DNA library was sequenced on the
Illumina NovaSeq platform following the
Illumina protocols (Illumina Inc., San Diego, CA,
U.S.A.) with an average coverage of nearly 100x.
About 97% of the targeted bases were covered
more than 10 times.

Bioinformatics analysis

After the base calling and quality assessment
of sequencing data, sequence reads were
analyzed and aligned to the human reference
genome applying the alignment tools.
Burrows-Wheeler  Aligner (BWA) and
Assembly Based ReAligner (ABRA) tools
were applied to sort sequencing alignments
and mark duplicate reads, respectively. The
single nucleotide polymorphisms (SNPs) and
insertion—deletion mutations (indels) were
called using the GATK HaplotypeCaller
program, and subsequently annotated using the
ANNOVAR program. Generally, variants
associated with monogenic disorders are rare
in public variant databases. With specific

settings, variants were filtered using datasets
from the SNP database (dbSNP, build 151),
1000 Genomes Project (2014 September

release), Genome Aggregation Database
(gnomAD), Haplotype Reference
Consortium (HRC), and the Exome

Aggregation Consortium (ExXAC). Only
variants, including SNPs and indels located
in exonic regions or canonical splicing sites,
were deemed plausible candidates, and
prioritized for further analysis. In silico
analysis applying Sorting Intolerant from
Tolerant (SIFT), Polymorphism Phenotyping
version 2 (PolyPhen-2), MutationTaster,
Protein ~ Variation Effect  Analyzer
(PROVEAN), Functional Analysis through
Hidden Markov Models (FATHMM), and
Combined Annotation Dependent Depletion
(CADD) were employed to obtain a

functional prediction. A left-plausible
candidate-gene variant associated with
cardiomyopathy  disorders was then

prioritized for confirmation in the validation

stage.
a2

14 12

ﬁ D— ‘  yr= Hyrs é 32 yrs
I ez =] hag W5 5] [ g g K [ ]

. Dilated cardiomyopathy

I Cardiac malformation

L]

Fig. 1. The DCM-affected family pedigree. Members are identified by generations and numbers. The arrow appoints the family
proband (IV: 9). In this pedigree, white symbols represent unaffected members; red and blue symbols represent affected; squares
represent males, and circles females; parallel lines indicate the consanguineous marriage.
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Co-segregation analysis

Segregation analysis was applied to involved
family members using PCR-Sanger sequencing
in accordance with the WES results. Primer pairs
were designed using Gene Runner 6.0 software,
and their sequences are as follows:

forward:
5'-CAAGGGGAAGGTTAGCATTCAGCA-3.
reverse:
5'-CTTGGGAACATTTGTGCTGCCTTCA-3".
The PCR products then were evaluated by gel
electrophoresis using 1.5% (w/v) agarose gel.

Results
To reveal the disease-causing genetic
variant(s), the genomic DNA obtained from

the proband was investigated by WES. Then,
the detected variant (Table 1) was validated by
PCR-gel  electrophoresis and  Sanger
sequencing. As expected, the DNA bands
represented two different fragment sizes in
heterozygous status of the deletion in the
proband (IV: 9), IV: 7, IV: 10, and 11I: 5 (Fig.
2A). Moreover, we found the heterozygous
deletion disrupting the pattern of base
arrangement in the sequencing chromatograms
of them (Fig. 2B). The gel electrophoresis
findings of Ill: 2 and IV: 5 individuals
displayed a single band in expected size, and
their sequencing chromatograms had an intact
base arrangement.
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Fig. 2. Identification and molecular validation of ¢.405_422+39del variant in the patient and her family members. A)
Result of electrophoresing PCR products of the proband (1V: 9), I11: 2, 1VV: 7, 1V: 10, IV: 5, I1I: 5, and negative control
(NTC) on 1.5% gel agarose. The LDR lane contains ladder 100bp+3kb. Columns with two bands represent the
heterozygous deletion. (B) The sequencing chromatograms indicate a disrupted base reading pattern after position G
nucleotide (the blue vertical line) in the proband (IV: 9) and IV: 7, IV: 10, I1I: 5.
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Table 1. Details of the Variant Identified. Variant annotation, according to the ANNOVAR program is based on RefSeq gene

annotation.
Chr chré
Start 7558480
End 7558536
Ref TGATGCTTACCAGAAAAGGTATTGTCCACAGAGCATGGATCGGGCAGTCCCCATGAA
Alt -
zygosity HET

Gene.refGene exonic

ExonicFunc.refGene DSP

DSP:NM_001008844:exon3:c.405_422del:p.C135 _R141delinsW,
AAChange.refGene  DSP:NM_001319034:exon3:¢.405_422del:p.C135_R141delinsW,
DSP:NM_004415:exon3:c.405_422del:p.C135 _R141delinsW

Arrhythmogenic right ventricular dysplasia 8, Autosomal dominant.
Cardiomyopathy, dilated, with woolly hair and keratoderma, Autosomal recessive.

Xref.refGene

Dilated cardiomyopathy with woolly hair, keratoderma, and tooth agenesis, Autosomal dominant.

Epidermolysis bullosa, lethal acantholytic, Autosomal recessive.
Keratosis palmoplantaris striata Il; Skin fragility-woolly hair syndrome, Autosomal recessive

Considering appearance of the pedigree and
inheritance pattern, we assumed that the
causative variant(s) might be inherited in
heterozygous status; subsequently, several
filtering steps were applied to prioritize the
variants in terms of: (1) having minor allele
frequency less than 0.01 in the 1000 Genomes
Project (http://www.internationalgenome.org/),
EXAC  (http://exac.broadinstitute.org/)  and
gnomAD  (http://gnomad.broadinstitute.org/)
databases; (2) occurrence in the coding regions
or essential/canonical splicing sites; (3) having
potential damaging or deleterious functional
effects that were predicted by multiple lines of in
silico computational analysis; (4) occurrence in
a candidate gene related to inherited DCM. The
filtering procedure was carried out with
assuming the homozygous status of inheritance
to be on the safe side, but this did not lead to any
candidate variant in the family.

The list of candidate variants was reduced
using Phenolyzer
(http://phenolyzer.wglab.org/), Face2Gene
(https: //www.face2 gene.com/), and Varcards
(http://159.226.67.237/sun/varcards/). The
suspected pathogenic variants were checked in
the HGMD® (The Human Gene Mutation
Database) and ClinVar databases. Further
investigation analyzed the variant frequency on
Iranome (a catalog of genomic variations in the
Iranian population) as the in-house database.
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Finally, we identified a novel heterozygous
small deletion in the family and classified it as
a pathogenic variant based on the American
College of Medical Genetics and Genomics
(ACMG) guidelines.

Discussion

Dilated cardiomyopathy is the most common
non-ischemic heart condition described by the
remodeling and contractile impairment of the left
ventricle in absence of other disorders affecting
its performance (14). Dilated cardiomyopathy
onset typically occurs during adulthood but can
occur any time from infancy to adolescence.
Dilated cardiomyopathy has a variable
phenotypic expressivity among affected patients.
Clinical severity may also range from
asymptomatic to mild to acute heart failure and
sudden cardiac death (15). To date, more than 50
genes related to DCM have been reported (16).
However, the molecular basis of a significant
number of cardiomyopathies is still uncertain.
The next-generation  sequencing (NGS)
technologies are powerful procedures that can
fulfill this gap, so they have significantly
accelerated the detection of disease-causing
genetic changes. Among NGS techniques, WES
has emerged as a strong and cost-effective
method to detect the causative variant(s) in
diseases with locus heterogeneity (17, 18). DSP
comprises 24 exons and encodes desmoplakin,
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an essential protein with a key role in
desmosomal adhesions (19, 20). Pathogenic
variants in DSP have been associated with skin,
hair, tooth, and heart disorders in humans. The
affected members of this study had wooly hairs,
but they were not investigated for possible skin
and tooth anomalies. However, no defects of
these types were found in the patients’ records.
Until March 2020, the ClinVar database lists 256
truncating DSP variants, of which 232 (90.6%)
are classified as pathogenic or likely pathogenic.
The variants with non-pathogenic classification
have been localized in the region encoding the
protein’s C terminus. Since this gene is dosage
sensitive, truncating variants (especially N
terminus variants) can lead to cardiac disease by
a haploinsufficiency mechanism (ClinGen
haploinsufficiency Score: 1) (21, 22). The
identified variant (c.405_422+39del) deletes 57
nucleotides from the genomic DNA, of which 18
nucleotides are located in exon 3, and 39
nucleotides remain in intron 3 (Fig. 3A). This
variation can cause disease with several
scenarios such as p.C135 R141delinsW, exon
skipping, using an exonic cryptic splicing donor
site, and using an intronic cryptic splicing donor
site. However, it seems that the most probable
scenario is intron retention. Thus, the identified
variant leads to intron 3 retention by deleting a
normal splicing donor site (Fig. 3B).
Subsequently, this variant leads to a premature
stop codon, and is assumed to induce nonsense-
mediated mRNA decay. It was shown in a recent
study that the truncating DSP variant
demonstrates relatively low penetrance by age
A) EXON 3

)

40 (23). In the present study, all family members
carrying the variant expressed cardiac
involvement, except for proband's younger sister
(IV: 10) who is apparently healthy due to her
young age, although she is expected to express
DCM in the future.

Multiple lines of evidence support the
pathogenicity of the variant detected in the
present study: a) it is a null variant; a deletion
encompassing a canonical splice site (donor GT
in 5 end of intron 3) affecting DSP mRNA
splicing, which is a reported mechanism of
disease associated with DCM and several other
phenotypes related to incomplete integrity of
heart muscle, hair, skin, and tooth tissues; b) this
variant is absent in public and local allele
frequency databases such as 1000 Genomes
Project, gnomAD database, and Iranome.
Additionally, no publication has introduced this
deletion as a causative variant, suggesting it is a
novel variation; c) this small deletion was not
detected in other family members who were not
diagnosed with DCM; and d) it is predicted as a
pathogenic variant (vs. benign predictions) by in
silico computational prediction tools.

In conclusion, combining WES with filtering
tools, we introduce a novel DSP deletion variant
(c.405_422+39del) that may be a causative
variant in a heart-transplanted case of DCM and
other affected family members. The present study
may help to further understand the relationship
between DSP and DCM and introduce a novel
marker for future genetic diagnosis and
counseling of families with DCM.
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Fig. 3. The consequence of identified deletion. (A) Normal splicing. During normal splicing, Intron 3 is removed, and exon sequences
are translated into the corresponding amino acids in a correct reading frame. (B) Intron retention scenario. The identified variant
(c.405_422+39del) deletes 57 nucleotides from the genomic DNA, of which 18 nucleotides are located in exon 3, and 39 nucleotides
remain in intron 3. Deletion of the normal splicing donor site led to intron 3 retention and subsequently this variant, resulting in a
premature stop codon.
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