Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 412-419 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarshar S, Mirnejad R, Babapour E. Frequency of blaCTX-M and blaTEM Virulence Genes and Antibiotic Resistance Profiles among Klebsiella pneumoniae Isolates in Urinary Tract Infection (UTI) Samples from Hashtgerd, Iran. rbmb.net. 2021; 10 (3) :412-419
URL: http://rbmb.net/article-1-652-en.html
Assistant Professor of Microbiology, Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran. *Corresponding
Abstract:   (385 Views)
Background: Klebsiella pneumoniae (K. pneumoniae) is an opportunistic microorganism and one of the most important causes of urinary tract infection. This study aimed to evaluate the frequency of K. pneumoniae producing broad-spectrum beta-lactamase in urinary tract infection and to determine the pattern of drug resistance.

Methods: This study was performed on 50 samples of K. pneumoniae isolated from patients with urinary tract infection referred to the Medical Diagnostic Laboratory in Hashtgerd city. The isolates were first evaluated for antibiotic susceptibility by disk diffusion method according to the method proposed by the Clinical and Laboratory Standards Institute (CLSI). Then phenotypic detection of ESBLS was carried out by the DDST method. The frequency of gene blaTEM and blaCTX-M was determined by PCR.

Results: The highest resistance was observed to ampicillin (94%) and the highest sensitivity was observed to gentamicin (84%). 22 isolates (44%) were positive for ESBLs production. Of the 50 isolates studied, 34% had blaCTX-M and 28% had blaTEM and 11 (22%) had both genes simultaneously. Also, more than 77% of positive ESBLs isolates had the blaCTX-M gene and approximately 63.64% of positive ESBLs isolates had the blaTEM gene.

Conclusions: Given the high prevalence of antibiotic-resistant and ESBL-producing isolates, early identification of these resistant isolates and their follow-up is essential to prevent further outbreaks. It is also important to use appropriate therapeutic strategies and proper and rational administration of
antibiotics by physicians.
Full-Text [PDF 314 kb]   (199 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2021/02/7 | Accepted: 2021/04/25 | Published: 2021/12/5

References
1. Chanbari M, Mirnejad R, Babapour E. Evaluation of Resistance to Fluoroquinolones and Its Relationship whit parC Gene Mutation in Klebsiella pneumoniae Clinical Isolates. Iranian Journal of Medical Microbiology. 2020;14(3):270-289. [DOI:10.30699/ijmm.14.3.270]
2. Razavi S, Mirnejad R, Babapour E. Involvement of AcrAB and OqxAB Efflux Pumps in Antimicrobial Resistance of Clinical Isolates of Klebsiella pneumonia. Journal of Applied Biotechnology Reports. 2020;7(4): 251-257.
3. Mahmood A, Al Hakawati MI. Non-beta-lactam Antimicrobials versus Extended Spectrum Beta-lactamase Producing Gram-Negative Bacteria: In vitro Susceptibility Study. Infect Dis Soc of Pak. 2011;43(5):507-11.
4. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603. [DOI:10.1128/CMR.11.4.589] [PMID] [PMCID]
5. Tankhiwale SS, Jalgaonkar SV, Ahamad S, Hassani U. Evaluation of extended-spectrum beta-lactamase in urinary isolates. Indian J Med Res. 2004;120(6):553-6.
6. Kalaskar A, Venkataramana K. Determination of antimicrobial resistance pattern and production of extended-spectrum Β-lactamases amongst Escherichia coli and Klebsiella pneumoniae from clinical isolates. Journal of Medical Bacteriology. 2015;1(3-4):17-24.
7. Liang C, Xing B, Yang X, Fu Y, Feng Y, Zhang Y. Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumonia in a hospital in China. Int J Clin Exp Med. 2015;8(1):1381-5.
8. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-nine Informational Supplement. Wayne: Clinical and Laboratory Standards Institute; 2019. Available from: http://ncipd.org/control/images/NCIPD_docs/CLSI_M100-S24.pdf.
9. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351-3. [DOI:10.1016/j.ijantimicag.2006.01.004] [PMID]
10. Abdolahi AR, Mehrazma M. Evaluation of antibiotic susceptibility and resistance in urinary infection, Imam Khomeini hospital, Complex-Tehran. Journal of Jahrom University of medical sciences. 2009;7(2):59-66. [DOI:10.29252/jmj.7.3.59]
11. Mansouri S, Neyestanaki DK, Shokoohi M, Halimi S, Beigverdi R, Rezagholezadeh F, et al. Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing Extended Spectrum β-lactamases in Kerman, Iran. Jundishapur J Microbiol. 2014;7(2):e8756. [DOI:10.5812/jjm.8756]
12. Mohajeri P, Izadi B, Naghshi N. Antibiotic sensitivity of Escherichia coli isolated from urinary tract infection referred to Kermanshah central laboratory. JOURNAL OF KERMANSHAH UNIVERSITY OF MEDICAL SCIENCES. 2011;15(1):e79392
13. Pakzad I, Karin MZ, Taherikalani M, Boustanshenas M, Lari AR. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS Hyg Infect Control. 2013;8(2):15.
14. Derakhshan S, Najar Peerayeh S, Fallah F, Bakhshi B, Rahbar M, Mohammad-Zadeh M. Identification of Extended Spectrum Beta-lactamase producing Klebsiella pneumoniae isolated from Intensive Care Unit (ICU) patients in three hospitals in Tehran. Infection, Epidemiology, and Medicine. 2013;1(1):9-13.
15. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla TEM, bla SHV, bla CTX-M Genes Among Clinical Isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbial drug resistance. 2010;16(1):49-53. [DOI:10.1089/mdr.2009.0096] [PMID]
16. Cao X, Cavaco LM, Lv Y, Li Y, Zheng B, Wang P, et al. Molecular characterization and antimicrobial susceptibility testing of Escherichia coli isolates from patients with urinary tract infections in 20 Chinese hospitals. J Clin Microbiol. 2011;49(7):2496-501. [DOI:10.1128/JCM.02503-10] [PMID] [PMCID]
17. Goudarzi M, Azad M, Seyedjavadi SS. Prevalence of Plasmid- Mediated Quinolone
18. Resistance Determinants and OqxAB Efflux Pumps among Extended-Spectrum-Lactamase Producing Klebsiella pneumoniae Isolated from Patients with Nosocomial Urinary Tract Infection in Tehran, Iran. Scientifica (Cairo). 2015;2015:518167. [DOI:10.1155/2015/518167] [PMID] [PMCID]
19. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47(2):559-562. [DOI:10.1128/AAC.47.2.559-562.2003] [PMID] [PMCID]
20. Peymani A, Farivar TN, Nikooei L, Najafipour R, Javadi A, Pahlevan AA. Emergence of plasmid-mediated quinolone-resistant determinants in Klebsiella pneumoniae isolates from Tehran and Qazvin provinces, Iran. J Prev Med Hyg. 2015;56(2):E61-E65.
21. Shams E, Firoozeh F, Moniri R, Zibaei M. Prevalence of plasmid-mediated quinolone resistance genes among extended-spectrum β-Lactamase-producing Klebsiella pneumoniae human isolates in Iran. J Pathog. 2015;2015:434391. [DOI:10.1155/2015/434391] [PMID] [PMCID]
22. Sedaghatpishe S, Ghane M, Babaeekhou L. Identification and sequencing of bla CTX-M genes in clinical isolates of Klebsiella pneumoniae from Milad hospital, Birjand University of Medical Sciences. 2020;26(4):315-326. [DOI:10.32592/JBirjandUnivMedSci.2019.26.4.103]
23. 22. Asgari S, Haddadi A, Harzandi N. Frequency of TEM and SHV in the extended-spectrum beta-lactamase-producing Klebsiella isolates from Karaj city. Medical Sciences. 2015;25(4):277-282.
24. Wintermans B, Reuland E, Wintermans R, Bergmans A, Kluytmans J. The cost‐effectiveness of ESBL detection: towards molecular detection methods?. Clin Microbiol Infect. 2013;19(7):662-5. [DOI:10.1111/j.1469-0691.2012.03998.x] [PMID]
25. Mansury D, Motamedifar M, Sarvari J, Shirazi B, Khaledi A. Antibiotic susceptibility pattern and identification of extended-spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran. Iran J Microbiol. 2016;8(1):55-61.
26. Nematzadeh S, Shahcheraghi F, Feizabadi MM, Nikbin VS, Nasehi L. Molecular characterization of CTX-Mβ-lactamases among Klebsiella pneumoniae isolated from patients at Tehran hospitals. Indian J Med Microbiol. 2011;29(3):254-257. [DOI:10.4103/0255-0857.83908] [PMID]
27. Shahcheraghi F, Moezi H, Feizabadi MM. Distribution of TEM and SHV beta-lactamase genes among Klebsiella pneumoniae strains isolated from patients in Tehran. Med Sci Monit. 2007;13(11):BR247-250.
28. Nasehi L, Shahcheraghi F, Nikbin V, Nematzadeh S. PER, CTX-M, TEM and SHV Beta-lactamases in Clinical Isolates of Klebsiella pneumoniae Isolated from Tehran, Iran. Iranian Journal of Basic Medical Sciences, 2010;13(3): 111-118.
29. Mirzaee M, Owlia P, Mansouri S. Distribution of CTX-M β-lactamase genes among Escherichia coli strains isolated from patients in Iran. Science. 2009;40(12):724-7. [DOI:10.1309/LMUUWBHMZEDYTBW5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb