Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 54-62 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Papadopoulos C, Mimidis K, Papazoglou D, Kolios G, Tentes I, Anagnostopoulos K. Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. rbmb.net 2022; 11 (1) :54-62
URL: http://rbmb.net/article-1-678-en.html
Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, Greece.
Abstract:   (2796 Views)
Background: Non-alcoholic fatty liver disease (NAFLD) constitutes a global pandemic. An intricate network among cytokines and lipids possesses a central role in NAFLD pathogenesis. Red blood cells comprise an important source of both cytokines and signaling lipids and have an important role in molecular crosstalk during immunometabolic deregulation. However, their role in NAFLD has not been thoroughly investigated.

Methods: Conditioned media from erythrocytes derived from 10 NAFLD patients (4 men, 6 women, aged 57.875±15.16) and 10 healthy controls (4 men, 6 women, aged 39.3±15.55) was analyzed for the cytokines IFN-γ, TNF-α, CCL2, CCL5, IL-8, IL-1β, IL-12p40, IL-17, MIP-1β, the signaling lipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), and cholesterol. Their effect on the cytokine profile released by RAW 264.7 macrophages was also studied.

Results: MCP1 levels were greater in conditioned growth medium from NAFLD patient erythrocytes than in that from healthy controls (37±40 vs 6.51±5.63 pg/ml). No statistically significant differences were found between patients and healthy controls with regard to S1P, LPA, cholesterol, or eight other cytokines. TNFa release by RAW 264.7 cells was greater after incubation with patient-derived erythrocyte-conditioned medium than in medium without RAW 264.7 cells from either healthy or NAFLD subjects.

Conclusions: Erythrocytes may contribute to liver infiltration by monocytes, and macrophage activation, partially due to CCL2 release, in the context of NAFLD.
Full-Text [PDF 258 kb]   (1018 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/03/30 | Accepted: 2021/05/12 | Published: 2022/05/26

References
1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005-23. [DOI:10.1002/hep.25762] [PMID]
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. [DOI:10.1002/hep.28431] [PMID]
3. Forlano R, Mullish BH, Nathwani R, Dhar A, Thursz MR, Manousou P. Non-Alcoholic Fatty Liver Disease and Vascular Disease. Curr Vasc Pharmacol. 2020;19(3):269-279. [DOI:10.2174/1570161118666200318103001] [PMID]
4. Caligiuri A, Gentilini A, Marra F. Molecular Pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. [DOI:10.3390/ijms17091575] [PMID] [PMCID]
5. Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18(8)727-35. [DOI:10.3748/wjg.v18.i8.727] [PMID] [PMCID]
6. Geng T, Sutter A, Harland MD, Law BA, Ross JS, Lewin D, et al. SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res. 2015;56(12):2359-71. [DOI:10.1194/jlr.M063511] [PMID] [PMCID]
7. Mauer AS, Hirsova P, Maiers JL, Shah VH, Malhi H. Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2017;312(3):G300-G313. [DOI:10.1152/ajpgi.00222.2016] [PMID] [PMCID]
8. Rachakonda VP, Reeves VL, Aljammal J, Rachel C, Joy Wb, James Tb, et al. DeLany, et al. Serum autotaxin is independently associated with hepatic steatosis in severely obese women. Obesity (Silver Spring). 2015;23(5):965-972. [DOI:10.1002/oby.20960] [PMID] [PMCID]
9. Fujimori N, Umemura T, Kimura T, Tanaka N, Sugiura A, Yamazaki T, et al. Serum autotaxin levels are correlated with hepatic fibrosis and ballooning in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2018;24(11):1239-1249. [DOI:10.3748/wjg.v24.i11.1239] [PMID] [PMCID]
10. Ioannou GN. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol Metab. 2016;27(2):84-95. [DOI:10.1016/j.tem.2015.11.008] [PMID]
11. Anderson HL, Brodsky IE, Mangalmurti NS. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. J Immunol. 2018;201(5):1343-1351. [DOI:10.4049/jimmunol.1800565] [PMID] [PMCID]
12. Buttari B, Profumo E, Riganò R. Crosstalk between Red Blood Cells and the Immune System and Its Impact on Atherosclerosis. Biomed Res Int. 2015;2015:616834. [DOI:10.1155/2015/616834] [PMID] [PMCID]
13. Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets. 2021;21(5):843-853. [DOI:10.2174/1871530320666201104115016] [PMID]
14. Papadopoulos C, Anagnostopoulos K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. Maedica (Bucur). 2020;15(4):513-516.
15. Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170(3):967-80. [DOI:10.2353/ajpath.2007.060441] [PMID] [PMCID]
16. Unruh D, Srinivasan R, Benson T, Haigh S, Coyle D, Batraet N, et al. Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis. Circulation. 2015;132(20):1898-908. [DOI:10.1161/CIRCULATIONAHA.115.017313] [PMID] [PMCID]
17. Lee SY, Song XY. Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research. Lawrence Erlbaum Associates. 2004;39(4):653-86. [DOI:10.1207/s15327906mbr3904_4] [PMID]
18. Hox JJCM, Schoot R van de, Matthijsse S. How few countries will do? Comparative survey analysis from a Bayesian perspective. Surv Res Methods. 2012;6(2):87-93.
19. R: The R Project for Statistical Computing. https://www.r-project.org/.
20. Kruschke JK. Bayesian estimation supersedes the t test. J Exp Psychol Gen. 2013;142(2):573-603. [DOI:10.1037/a0029146] [PMID]
21. Darbonne WC, Rice GC, Mohler MA, C A Hébert, A J Valente, J B Baker, et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest. 1991;88(4):1362-9. [DOI:10.1172/JCI115442] [PMID] [PMCID]
22. Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullocket G, et al. Red Blood Cells Store and Release Interleukin-33. J Investig Med. 2015;63(6):806-10. [DOI:10.1097/JIM.0000000000000213] [PMID] [PMCID]
23. Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte Chemoattractant Protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One. 2014;9(3):e92053. [DOI:10.1371/journal.pone.0092053] [PMID] [PMCID]
24. Liese AM, Siddiqi MQ, Siegel JH, Denny T, Spolarics Z. Augmented TNF-alpha and IL-10 production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes. J Leukoc Biol. 2001;70(2):289-96. [DOI:10.1097/00024382-200106001-00202]
25. Buttari B, Profumo E, Di Cristofano C, Pietraforte D, Lionetti V, Capoano R, et al. Haemoglobin triggers chemotaxis of human monocyte-derived dendritic cells: Possible role in atherosclerotic lesion instability. Atherosclerosis. 2011;215(2):316-22. [DOI:10.1016/j.atherosclerosis.2010.12.032] [PMID]
26. Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687-96. [DOI:10.1182/blood-2013-10-530469] [PMID] [PMCID]
27. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455-466. [DOI:10.1038/nrgastro.2017.71] [PMID] [PMCID]
28. Martínez MC, Andriantsitohaina R. Extracellular vesicles in metabolic syndrome. Circ Res. 2017;120(10):1674-1686. [DOI:10.1161/CIRCRESAHA.117.309419] [PMID]
29. Xiong Z, Cavaretta J, Qu L, Stolz DB, Triulzi D, Lee JS. Red blood cell microparticles show altered inflammatory chemokine binding and release ligand upon interaction with platelets. Transfusion. 2011;51(3):610-21. [DOI:10.1111/j.1537-2995.2010.02861.x] [PMID] [PMCID]
30. Choe H, Moore MJ, Owens CM, Wright PL, Vasilieva N, Liet W, et al. Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol Microbiol. 2005;55(5):1413-22. [DOI:10.1111/j.1365-2958.2004.04478.x] [PMID]
31. Yang W, Huang H, Wang Y, Yu X, Yang Z. High red blood cell distribution width is closely associated with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2014;26(2):174-8. [DOI:10.1097/MEG.0b013e328365c403] [PMID]
32. Guimarães-Nobre CC, Mendonça-Reis E, Passinho-da-Costa L, Miranda-Alves L, Clemilson Berto-Junior H. Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol. 2021;10(2):314-326. [DOI:10.52547/rbmb.10.2.314] [PMID] [PMCID]
33. Huang C, Gao J, Wei T, Shen W. Angiotensin II-Induced Erythrocyte Senescence Contributes to Oxidative Stress. Rejuvenation Res. 2022;25(1):30-38. [DOI:10.1089/rej.2021.0054] [PMID]
34. Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol. 2013;378(1-2):29-40. [DOI:10.1016/j.mce.2012.04.013] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb