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Abstract

Methylmalonic acidemia (MMA) is usually caused by a deficiency of the enzyme methylmalonyl-CoA mutase
(MCM), a defect in the transport or synthesis of its cofactor, adenosyl-cobalamin (cblA, cblB, cbIC, cblF, cbiD,
and cbIX), or deficiency of the enzyme methylmalonyl-CoA epimerase. A comprehensive diagnostic approach
involves investigations of metabolites with tandem mass spectrometry, organic acid analysis with gas
chromatography, enzymatic studies with fibroblast cell culture, and finally, mutation analysis. With biochemical
techniques and enzymatic assay the reliable characterization of patients with isolated MMA for mutation analysis
can be achieved. Reliable classification of these patients is essential for ongoing and prospective studies on
treatments, outcomes, and prenatal diagnoses. This article reviews the diagnostic techniques used to characterize
patients with MMA.
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Introduction

Methylmalonic acidemia (MMA) is usually caused by
a deficiency of the enzyme methylmalonyl-CoA
mutase (MCM, EC 5.4.99.2), a defect in the transport
or synthesis of its cofactor, adenosyl-cobalamin (cblA,
cbIB, chIC, chIF, cblD and cblX), or a deficiency of the
enzyme methylmalonyl-CoA epimerase. MCM s a
mitochondrial enzyme that catalyzes the isomerization
of methylmalonyl-CoA to succinyl-CoA.

Isolated MMA is found in patients with mutations
in MUT, located on chromosome 6p21, causing partial
(mut) or complete (mut®) enzyme deficiency (1). In
general, the mut forms of MMA is unresponsive to
vitamin B12 therapy. MCM activity requires 5-prime-
deoxyadenosylcobalamin  (AdoChl), a coenzyme
form of vitamin B12. Patients with defects in the
synthesis of AdoCbl are usually responsive to vitamin
B12 therapy and are classified

as ‘chl' type. The cblA type is caused by mutations in
the MMAA gene on 4931. MMAA is involved in the
synthesis of adenosylcobalamin  (AdoChl), a
coenzyme for MCM. The cbIB type is caused by
mutations in the MMAB gene on 12g24. MMAB
encodes cobalamin adenosyl transferase (ATR),
which catalyzes transfer of an adenosyl group from
ATP to cobalamin (I) to form AdoCbl (2, 3).
Combined MMA and homocystinuria is a
genetically heterogeneous disorder of cobalamin (cbl;
vitamin  B12) metabolism. The defect causes
decreased levels of the coenzymes adenosylcobalamin
(AdoChbl) and methylcobalamin (MeCbl), which
result in decreased activity of the respective enzymes
MCM and methyltetrahydrofolate homocysteine
methyl transferase, also known as methionine synthase
(MTR). Different forms of the disorder have been
classified according to complementation groups of
cells in vitro: cblC, chlD, cblX and cblF. Members of
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complementation group cbID all contain homozygous
or compound heterozygous mutations in the
MMADHC gene, located on chromosome 2023. The
cbIC type of combined MMA and homocystinuria is
caused by homozygous or compound heterozygous
mutations in the MMACHC gene located on
chromosome 1p34. MMA and homocystinuria, cblC
type, is the most common inbom error of cobalamin
metabolism, with about 250 known cases (4). The cblF
type is caused by homozygous or compound
heterozygous mutations in the LMBRD1 gene on
chromosome 6q13 (5). The cblX type is an X-linked,
X028, recessive metabolic disorder that is caused by

mutations in the HCFC1 gene.

Also deficiency of the enzyme methylmalonyl-
CoA epimerase and ADP-forming succinyl-CoA
synthetase (SCS-A, EC 6.2.1.5) is found in patients
with  MMA. Deficiency of the enzyme
methylmalonyl-CoA epimerase is caused by
mutation in the MCEE gene on chromosome
2p13.3 and deficiency of the SCS is caused by
mutation in the SUCLA2 gene on chromosome
13g14.2. SCS is a mitochondrial matrix enzyme
that catalyzes the reversible synthesis of succinyl-
CoA from succinate and CoA. Fig. 1 shows the
genes involved in the propionyl-CoA to succinyl-
CoA conversion pathway.
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Fig. 1. The propionyl-CoA to succinyl-CoA conversion pathway

Onset of the manifestations of isolated MMA ranges
from the neonatal period to adulthood. All
phenotypes demonstrate intermittent periods of
relative health and metabolic decompensation,
usually associated with intercurrent infections and
stress. In the neonatal period the disease can present
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with lethargy, vomiting, hypotonia, hypothermia,
respiratory  distress,  severe  ketoacidosis,
hyperammonemia, neutropenia, and
thrombocytopenia, and can result in death. In the
infantile/non-B12-responsive  phenotype, the most
common form, infants are normal at birth but develop
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lethargy, vomiting, dehydration, hepatomegaly,
hypotonia, and encephalopathy. An intermediate B12-
responsive  phenotype occasionally presents in
neonates, but usually presents in the first months or
years of life; affected children exhibit anorexia, failure
to thrive, hypotonia, and developmental delay, and
sometimes have protein aversion and/or vomiting and
lethargy after protein intake.

Atypical and "benign"/adult MMA are associated
with increased, albeit mild, urinary excretion of
methylmalonate; however, it is uncertain whether
individuals with these conditions will develop
symptoms. Major secondary complications of MMA
include  developmental delay  (variable),
tubulointerstitial nephritis with progressive renal
failure, “metabolic stroke” (acute and chronic basal
ganglia involvement), disabling movement disorder
with choreoathetosis, dystonia and para/quadriparesis,
pancreatitis, growth failure, functional immune
impairment, and optic nerve atrophy. This review
describes the biochemical and molecular genetics
methods used to diagnosis isolated MMA.

Diagnosis of MMA

Acidosis, ketosis, hyperammonemia, hypoglycemia,
hyperglycemia, and neutropenia are symptoms of
methylmalonic and propionic acidemia (PA).
Laboratory findings suggestive of MMA and PA
include low bicarbonate levels less than 22 mmol/l in
infants and less than 17 mmol/l in neonates, ketones
in the urine, blood ammonia levels greater than150
ng/dl inneonates, 70 pg/dl in infants, and 35-50 pg/dl
in older children and adults, blood glucose levels less
than 40 mg/ml in infants and less than 60 mg/ml in
children, and absolute neutrophil counts less than
1,500/mm? (6). Acylcarnitine levels in patients with
any of the listed laboratory findings should be
determined by tandem mass spectroscopy (MS/MS).
Patients should also be screened for PA/MMA based on
C3and C3:C2 ratios. Patients with suspected disorders
of cobalamin or propionate metabolism have C3 values
greater than 7 pmol/l and C3:C2 ratios greater than 0.2;
however, such screening cannot distinguish between
MMA and PA. Table 1 shows the differential diagnoses
of MMA and PA.

Table 1. Differential diagnosis of MMA and PA.

Amino Acids

Plasma Amino

Clinical Routine Laboratory Acids Urine Organic
pathway Enzyme L . -
Symptoms Investigation (Acylcarnitine Acids
affected .
profile)
Methvl Isoleucine Acidosis, ketosis,  Low bicarbonate level, Methvimalonic acid
Y . k Methylmalo  hyperammonemi  positive ketones inthe . Y Methylmalonic
malonic valing, . . . in blood, Acyl .
L - nyl CoA a, hypoglycemia,  urine, blood ammonia S acid and methyl
Acidemia  methionine, . carnitines, increased . S
. mutase hyperglycemia, levels, low blood L citrate in urine
(MMA) threonine . glycine in blood
and neutropenia glucose levels
I . Acidosis, ketosis,  Low bicarbonate level, Propionic acid, 3-
.. soleucine, . ! . . . .. C
Propionic valine Propionyl hyperammonemi  positive ketones inthe  Propionylcarnitine, OH propionic
Acidemia - CoA a, hypoglycemia,  urine, blood ammonia  increased glycine in acid, methyl
methionine, . . .
(PA) threonine carboxylase  hyperglycemia, levels, low blood blood citrate, propionyl

and neutropenia

glucose levels glycine in urine

A definitive diagnosis of the disorder is based on
urine organic acid analysis using gas
chromatography/mass spectrometry (GC/MS) (6,
7). Organic acids can be measured using any body
fluid, but urine is the most efficient for determining
the type of disorder. The determination of organic
acids and glycine conjugates in urine is key for the
diagnosis and follow-up of MMA.. Urine collected
over 24 h allows for variations in volume excretion
during the day. The impracticality of 24 h collection
is, however, such that a random specimen,
preferably the first morning voiding, an acceptable
alternative. Intra-individual variations will occur

with respect to the time of sampling, the patient’s
clinical status and diet, and whether the sample is
collected when the patient is fasted or fed. Sampling
during fasting or metabolic decompensation is often
considered to be most valuable because, in most
cases, metabolites of interest are then excreted
selectively or at higher concentrations. Two factors
can increase excretion of organic acids; first, an
increase in excretion may be nonspecific because
some metabolites are reported to be abnormally
excreted in conditions not attributable to IEM, such
as drug therapy, diet, non-IEM diseases, or
physiologic conditions. A second common

Rep. Biochem. Mol. Biol, Vol. 5, No. 1, Oct 2016 3


http://rbmb.net/article-1-79-en.html

[ Downloaded from rbmb.net on 2026-01-29 ]

Keyfi F etal.

misinterpretation may arise from bacterial
metabolism. Of possible endogenous origin, such as
in intestinal infections, is the abnormal excretion of
d-lactate, methylmalonate, p-
hydroxyphenylacetate,  p-hydroxyphenyllactate,
glutarate, benzoate, and hippurate. A urinary
organic acid profile is nearly always abnormal
during the acute illness phase, but it is commonly
barely detectable before or between crises;
therefore, it is important to obtain a urine sample for
testing during the peak of a crisis. Urine organic acid
levels from patients with MMA contain relatively
high concentrations of methylmalonic acid and
methyl citrate, whereas urine from patients with PA
will show relatively high concentrations of
metabolites of propionyl CoA, including propionic
acid, methyl citric acid, 3-OH propionic acid, and
propionyl glycine (6). Table 2 shows
methylmalonic acid concentrations in urine for
different subtypes of MMA.

Table 2. Methylmalonic acid concentrations in urine for
different subtypes of MMA.

Methylmalonic acid concentration

Subtype
Urine (mmol/mol creatinine) Blood (uM)
mut, mut® 1000-10000 100-1000
cblIB, cblA, cbID 10-100 5-100
MCEE deficiency, .
SUCLA? 50-1500 7
Normal <4 <0.27

Plasma amino acids in MMA contain carnitines,
whereas those in PA contain propionylcarnitine.
Both can have high glycine even when well
controlled (6). Also, plasma homocysteine can be
measured to identify gene types involved in MMA.
After urine organic acid analysis and determination
of plasma homocysteine concentration, patients are
diagnosed based on one of the following criteria:

a) Patients with very high concentrations of
methylmalonic acid in urine, but normal
homocysteine, have mutations in at least one of the
MUT (mut, mut®), cblB, cblA and cbID (var 2)
subtypes. MMA subtypes are diagnosed by enzyme
assay analysis and/or molecular studies. Molecular
genetics techniques are available for carrier testing
of family members to aid in reproductive decision
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making and to determine whether prenatal testing is
necessary (8).

b) Patients with slightly elevated methylmalonic
acid in urine, but normal homocysteine, have
mutations in at least one of the MCEE, SUCLA2
and benign MMA subtypes. Subtypes are diagnosed
by enzyme assay analysis and/or molecular study.
c) Patients with abnormally high concentrations of
methylmalonic acid in urine and homocysteine in
plasma have mutations in at least one of the cblC,
cblF, or chiD (var 1) subtypes. Subtypes are
diagnosed by mutation analyses of MMACHC,
MMADHC, and LMBRD1. Fig. 2 shows a
flowchart for different stages of MMA diagnosis.

1. Acylcarnitine profile analysis

In a subset of newborn diseases with severe
metabolic disorders, irreversible damage with
adverse lifelong consequence may occur. For some
of these diseases, a diagnostic method may help to
prevent such damages. A critical screening
technique used to detect many of these metabolic
disorders in newborns is tandem mass spectrometry
(MS/MS). MS/MS  has the potential to
simultaneously detect and quantify many
metabolitess  with  similar  physicochemical
properties. This constitutes a dramatic advance over
the classical methods used for newborn screening.
MS/MS has improved the detection of inborn errors
of metabolism in newborns by making the analysis
more sensitive, specific, and reliable than was
previously possible. Its inherent ability to detect and
quantify multiple metabolites in a single sample
permits wide recognition of amino acid, fatty acid,
and organic acid disorders.

Many patients have less severe symptoms if
diagnosed and treated early. In addition, early
diagnosis can decrease medical expenses and allow
family planning to be considered before other
affected siblings are born. Therefore, MS/MS can
provide considerable benefits to patients and their
families if integrated into newborn screening
programs, provided that adequate funding is made
available to cover the costs of the additional
medications and foods. One of the disorders that can
be diagnosed following MS/MS is MMA. The
screening program identifies children that may be
considered at risk for these disorders. Newborn
screening for PA/MMA based on C3 and C3:C2
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was begun in New York State in November 2004.
The diagnoses are made at specialty care centers
based on test results and evaluation by metabolic
specialists. In May 2005, methylmalonyl carnitine

(CADC) was added to the newborn screening panel
as a secondary marker for PA/IMMA. In some
instances, samples were referred to rule out
disorders of propionate metabolism on the basis of
persistently elevated C4DC. Until 2008, a protocol

was used in New York State that referred patients
with suspected disorders of cobalamin or propionate

metabolism with C3 concentrations greater than7
umol/l and C3:C2 ratios greater than 0.2 (9).

Methylmalonic

Routine laboratory
investigation

Aciduria

Glucose, Electrolytes,
Ammonia, Blood gas,
Lactate, CBC, Urine ketones

Mutation analysis of
MUT, MMAA and
MMAB genes

Methylcitric acid
Hydroxy propionic acid

444 MMA
(N) Homesysteine

MMA
mut, mut’, cblA,
cblB, cblD (var2)

Enzyme assay, [*C]
propionate
incorporation

Tandem Mass
Spectrometry

High Progionil Carniting
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Urine Organic acid
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Chromatography

4 Mma
(N) Homegysteine

MCEE
SUCLA2
Benign MMA

Mutation analysis

Enzyme assay

Biochemical Plasma
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xxxxxx
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Plasma Homecysteine.
Serum B12
Glycing in serum
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deficiency, cblF

Enzyme activity

assay

Fig. 2. A flowchart for different stages of MMA diagnosis

2. Organic acid analysis

In the hereditary diseases known as organic
acidemia, an enzyme or co-factor defect in a
metabolic pathway leads to the accumulation and
increased excretion of one or more of these acidic
metabolites in urine. Therefore, human urine
contains numerous organic acids and other chemical
compounds at a variety of concentrations (10) and
urinary organic acid analysis has become an
important tool for laboratories involved in the
diagnosis of these inherited metabolic disorders.
Gas chromatography (GC) is the technique of

choice to separate and identify more than 250
normal and pathological acidic metabolites detected
in these diseases (11-13).

In 1963, Cox and White demonstrated an
increase in urinary excretion of methylmalonic acid
in patients with vitamin B12 deficiencies (14). Since
then numerous methods have been described for the
determination of urinary methylmalonic acid using
colorimetry or GC (15, 16). Some of these methods
utilize pre-purification of methylmalonic acid by
thin-layer chromatography or ion-exchange resins
in conjunction with calorimetric procedures or GC.
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They were sensitive enough to measure a greatly
increased amount of methylmalonic acid, but
accurate determination of small amounts of
methylmalonic acid in biological specimens has
been difficult (17).

Millar et al (1974) described an improved
method based on gas-liquid chromatography (GLC)
of the butyl ester of methylmalonic acid, which was
produced by reacting a diethyl ether extract of urine
or freeze-dried urine with a mixture of boron
trifluoride and butanol. Therefore, methylmalonic
acid was directly extracted from urine and measured
as its butyl ester (18). Tanaka et al. (1980) described
a practical gas-chromatographic method of urinary
organic acid analysis that was designed to be used in
organic acidemia screening programs. This method
involves extraction of urine with ethyl acetate,
dehydration of the extracted residues,
trimethylsilylation, and use of the list of retention
indices to identify the organic acids (19).

In 1981 Maties et al. modified Millar's method
and adapted it for use with urine specimens
absorbed into filter paper. The advantage of this
method was that methylmalonic acid was
quantitated with acceptable confidence from the
small amount of urine present on filter paper
specimens that were easily collected and mailedto a
central testing laboratory. This technique was also
applicable to the detection of other types of organic
acidemias (20).

In 1983, Hyman et al. described a rapid method
for MMA detection that utilizes DEAE-cellulose
paper for sample collection and diazotized p-
nitroaniline for color development. Using anion-
exchange filter paper, urine organic acids are
selectively adsorbed to the paper. The color reaction
with diazotized p-nitroaniline, which takes place in
situ, is more sensitive than a reaction in solution, and
substances producing interfering colors with the
reagent can be rinsed from the disc prior to the assay,
making the assay more accurate (21).

Nakamura et al. (1987) described a method for
microanalysis of short chain dicarboxylic acids
including  methylmalonic,  succinic,  and
methylsuccinic acids, which consists of pre-
fractionation of the dicarboxylic acid fraction by
ion-exchange chromatography, extraction of the
eluate with ethyl acetate, and analyses of
dicarboxylic acids as dimethyl esters by GC. They

6 Rep. Biochem. Mol. Biol, Vol. 5, No. 1, Oct 2016

suggested that small amounts of these dicarboxylic
acids in normal human urine, amniotic fluid, and
serum can be accurately measured with this method
(7).

Verhaeghe et al. (1988) developed a method that
combines the specificity, reproducibility, and high
extraction yield of anion-exchange chromatography
with the speed and simplicity of solvent extraction
using a gas chromatography-flame ionization detector
(GC-FID) to measure urine organic acids. They
suggested that this convenient procedure is selective,
reproducible, and a suitable alterative to the more
cumbersome diethylaminoethyl-Sephadex extraction
method (10).

Hoffman et al. (1989) described a procedure for
analysis for organic acids in various biological
samples that incorporates the O-(2,3,4,5,6-
pentafluorobenzyl)  oxime-trimethylsilyl ~ (O-
PFBOxime-TMS) esters of oxoacids, aldehydes,
and ketones. The gas-chromatographic properties of
the O-PFEOxime-TMS esters have distinct
advantages over the commonly used O-ethoxime-
TMS esters; each is processed in a manner identical
to that for aqueous standards, and requires no
deproteinization. They suggested that there are no
limitations on sample volumes and it is likely that
cerebrospinal fluid and homogenized tissue samples
can also be analyzed without further modifications.
Proteins and peptides, as well as basic and polar
low-molecular mass compounds, such as amino
acids, inorganic acids, creatinine, purines, amines,
sugars, and urea are retained on the silicic acid
column. An additional advantage is that orotate and
uracil, compounds valuable in distinguishing some
urea-cycle disorders, are efficiently extracted (22).

One of the most critical points in a metabolic-
profiling scheme is the isolation of the compounds
of interest from the biological matrix. These should
be extracted in high, uniform, and reproducible
yields, accompanied by as few compounds as
possible from other product classes. Because
organic acids cover such a wide range of polarity
and have different chemical properties related to the
various functional groups present, this requirement
has been difficult to meet. Moreover, for a
procedure to be useful as a routine diagnostic
method, one should be able to process several
samples simultaneously with reasonable accuracy
and speed.
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Methods currently in use consist of isolating
acidic constituents from urine before derivatization
and GC. These include anion-exchange
chromatography based on organic polymers or
cellulose and solvent extraction with ethyl acetate
or diethyl ether. The principal advantage of
diethylaminoethyl-Sephadexcolumn
chromatography is its specificity and high and
reproducible extraction recovery of polar and
nonpolar acids. This method is strongly
recommended for quantitative monitoring and for
recognizing subtle changes in excretion profiles.
Disadvantages of this method are that it is a
laborious and complex procedure and the profile
may be obscured by dominant peaks of some polar
acids and inorganic sulfate and phosphate, which
can mask some important organic acids in the gas
chromatogram. These short comings impede
diagnoses of metabolic diseases, especially in
instances in which the increases in organic acid
metabolites are small, as in vitamin-responsive
organic acidopathies. Because of these practical
difficulties, many groups have found solvent
extraction to be an attractive approach for routine
diagnoses of organic acidemias. However, solvent
extraction is more widely used because it is fast and
simple and yields an adequate recovery of aromatic
and less-polar aliphatic acids with minimal co-
extraction of sulfate and phosphate (10).

Solvent extraction has serious limitations
imposed by the low and unreproducible
extractability of polar acids such as 3-
hydroxyisovalerate, 3-hydroxypropionate, methyl
citrate, and citrate (19).

In addition, an organic acid profile enables one
to evaluate metabolic disorders
pathobiochemically on the basis of their relations
to one another as precursors or products. Therefore,
careful consideration of small changes in organic
acid ratios is essential for accurate diagnosis and
optimal management for prognosis after treatment
in addition to quantitative determination of organic
acids. GC-MS is more specific, in that
quantification is based on the relative intensities of
characteristic fragment ions in a reconstructed ion
chromatogram. Mass chromatography usually
yields lower precision and sensitivity than GC-FID
detection, and single- or multiple-ion monitoring
can be used to quantify only a few target

compounds. With GC-FID detection, on the other
hand, compounds that are 100- to 1000-fold less
concentrated than the major components of the
sample can still be quantified (10). GC/MS
requires  expensive instrumentation, and
maintenance, operation, and data interpretation
require highly-specialized training and technical
expertise. In addition, a computer is almost
indispensable for data processing. Thus, organic
acidemia has been screened in only a few major
medical centers, where such instruments and
expertise are available.

In conclusion, at present, solvent extraction
with ethyl acetate, diethyl ether, or both, is widely
used. This type of liquid extraction yields poor
analytical recoveries of the more-polar compounds
and is inconvenient for use with large numbers of
samples. Also, GC-MS has become a well-
established, easily automated, and reliable
technology in the research field of metabolomics
(23). Human urine contains many metabolites, and
GC-MS analysis of urinary organic acids is an
important technique for the diagnosis of inborn
errors of lipid, amino acid, and carbohydrate
metabolism (24). By means of urease pretreatment
of urine samples and other methodological
improvements, GC-MS has been applied to
simultaneously analyze the numerous metabolic
intermediates of multiple categories in urine,
providing diagnostic evidence for more than 130
inborn errors of metabolism (IEM) (25- 27).

3. Enzyme activity assay

MMA may be diagnosed by measuring MCM
activity, with or without the addition of AdoChbl.
This can be used to distinguish between two MMA
variants (Cbl-responsive and Cbl-unresponsive)
and distinguish between two MUT subtypes (mut
and mut®). Thus, the in vitro measurement of
MCM activity, with and without AdoCbl, is useful
to investigate the Chl pathway, diagnose MMA,
identify MUT and cbl mutations, and gain insight
into the biochemical changes accompanying
vitamin B12 deficiencies. Methods described and
employed to measure MCM activity include
radiometric methods, in which [14C] succinyl-
CoA is produced and separated from the substrate
DL[CH3-14C]methylmalonyl-CoA by paper
chromatography (28, 29), thin  layer
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chromatography (30, 31), electrophoresis (32),
potassium permanganate oxidation (33, 34),
microwell filtration (35), extraction into ethyl
acetate  (36), high  performance liquid
chromatography (HPLC) (37) and GC (38). There
are also nonradioactive assays based on the
separation of methylmalonyl-CoA and succinyl-
CoA by reverse-phase HPLC (39, 40), or on the
direct spectrophotometric assay of succinyl-CoA
(41- 43). The first six methods are reputed to be
laborious  because they require  many
manipulations, and time-consuming because of the
numerous incubations, and they have been
criticized for their lack of sensitivity. The
permanganate oxidation method is also criticized
because the optimal conditions for oxidation vary
depending on the permanganate concentration and
heating time. The gas chromatographic
radiometric assay method appears to be sensitive,
but is also time-consuming. The lack of sensitivity
and reproducibility, and the inconvenience of the
radiometric assay for MCM activity make HPLC
the method of choice. Therefore, the
nonradioactive HPLC assay seems to be
satisfactory for measuring the conversion of small
fractions of methylmalonyl-CoA to succinyl-CoA,
and is said to be simple, rapid, reliable, and highly
reproducible. This method is sufficiently sensitive
to measure low MCM activity, such as the holo-
MCM activity in tissue extracts, or the total MCM
activity of cells. We therefore believe this method
is suitable for detecting abnormal MCM
apoenzyme, whether to diagnose MMA or detect
errors of cobalamin metabolism (44).

4. Mutation analysis

MUT

MMA is an inborn error of metabolism due to the
impaired isomerization of L-methylmalonyl-CoA
to succinyl-CoA. This reaction is catalyzed by the
mitochondrial protein MCM, an
adenosylcobalamin-dependent enzyme (45). The
human MUT gene, located on chromosome 6, is
comprised of 13 exons spanning over 35 kb. The
open reading frame consists of 2.7 kb, encoding
750 amino acids (46). Two classes of mutations in
MUT are classically distinguished by studies of
[14C]-propionate  metabolism in  primary
fibroblasts from patients with MMA (47). Mut®

8 Rep. Biochem. Mol. Biol, Vol. 5, No. 1, Oct 2016

mutations result in no detectable MCM activity.
Mut™ mutations result in low residual enzyme
activity. The human MUT gene was identified by
Ledley et al., who screened an expression library
with mutase antibodies to isolate the first human
CDNA (48). Over the last 27 years a number of
studies have described the spectrum of mutations
observed at the MUT locus in human patients (45,
49-57). To date, 272 different mutations have been
identified, including 187 missense/nonsense
mutations, 24 splice-site mutations, 37 small
deletions, 20 small insertions, three small indels,
and one gross deletion.

chlC

MMA, cobalamin deficiency type C (cblC) with
homocystinuria (MMACHC gene) is the most
common genetic defect in cobalamin metabolism
(4, 58). The MMACHC gene responsible for cbIC
disorder is located on chromosome 1p34.1 and
encodes a polypeptide of 282 amino acids. Exons
1-4 are coding and exon 5 is non-coding. The
MMACHC protein may act as an intracellular
cobalamin-trafficking chaperone and has been
shown to act, in part, catalyzing the reductive
decyanation of cyanocobalamin, generating
cob(Ilalamin, which is the substrate for
assimilation into the active cofactor forms
methylcobalamin (MeChbl) and
adenosylcobalamin (AdoCbl) (59). To date,
mutation analyses of MMACHC (60, 61) have
shown 81 different mutations, which include 43
missense/nonsense mutations, five splice site
mutations, 19 small deletions, eight small
insertions, one small indel, four gross deletions,
and one gross insertion.

chlA

The cblA type is caused by mutations in the
MMAA gene on 4g31. MMAA is involved in the
synthesis of adenosylcobalamin (AdoCbl) (2).
Two different enzymatic functions have been
identified for the MMAA gene product: a role in
vitamin B12 transport into the mitochondria,
reduction of cobalamin 1l to cobalamin 1, and the
conservation or re-activation of MCM. Multiple
mutations in various regions of the gene have been
identified, which will help guide future structure
and function studies (62, 63). The mutations includ
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30 missense/nonsense mutations, four splice site
mutations, five small deletions, five small
insertions, and one gross deletion.

cblB

In cbIB type of MMA, the defective gene is
MMAB. The MMAB gene, on chromosome
12q24.1, encodes the mitochondrial enzyme ATP:
cobalamin adenosyl transferase (ATR), which
catalyzes transfer of an adenosyl group from ATP
to cobalamin (1) to form AdoCbl (3). Mutation
analysis of the MMAB gene identified 20
missense/nonsense mutations, seven splice site
mutations, two regulatory mutation, five small
deletions, three small insertions, and one small
indel (63, 64).

MCEE

D-methylmalonyl-CoA (D-MMCoA) is formed as
a product of the propionyl-CoA carboxylase
reaction. D-MMCOA requires racemization prior
to becoming a substrate for the MCM reaction, and
a deficiency of D-methylmalonyl-CoA racemase
(MCR, EC 5.1.99.1) has long been postulated as a
potential etiology of hereditary MMA (65). The
epimerase gene (MCEE) on chromosome 2p13.3
was the first cobalamin-related gene to be
identified on the basis of prokaryotic gene
arrangements  (66). To  date,  three
missense/nonsense mutations have been identified.

Other subtypes

At least four other genetic entities pathways can be
associated with isolated MMA. cbhID types are
caused by homozygous or compound
heterozygous mutations in the MMADHC gene,
found on chromosome 2g23; these include eight
missense/nonsense mutations, two small deletions,
and three small insertions (67). Function of the
product of this gene remains unknown; it shows
homology to the putative ATPase component of a
bacterial ABC transporter. Mutations in the C-
terminal region were identified in patients with
cblID variant 2, mutations in the N-terminal region
were identified in patients with cbID variant 1, and

truncating mutations were associated with the
classic cblD phenotype.This supports suggestions
that the MMADHC gene product plays a role in
directing cobalamin to the 2 cobalamin-dependent
enzymes of mammalian cells, Methylmalonyl
CoA mutase and Methionine synthase (68).

cblF type is caused by homozygous or
compound heterozygous mutations in the
LMBRD1 gene, found on chromosome 6¢13. This
gene produces a lysosomal cobalamin transporter
protein that facilitates lysosomal cobalamin export
(69). To date, no mutations have been reported for
this gene. The SUCLA2 gene encodes the beta-
subunit of the ADP-forming succinyl-CoA
synthetase (SCS-A; EC 6.2.15). SCS is a
mitochondrial matrix enzyme that catalyzes the
reversible synthesis of succinyl-CoA from
succinate and CoA. The reverse reaction occurs in
the Krebs cycle, while the forward reaction may
produce succinyl-CoA for activation of ketone
bodies and heme synthesis. To date, ten
missense/nonsense mutations, one splice site
mutation, one small insertion, one gross deletion
and one small indel have been identified (70). The
cblX type is an X-linked (Xg28) recessive
metabolic disorder characterized by severely
delayed psychomotor development apparent in
infancy and is caused by mutations in the HCFC1
gene. Mutation in HCFC1 gene inhibits its
function in the transcriptional activation of
MMACHC gene and showed that disorder of
transcription can cause an inborn error of
metabolism (71). To date, no mutations have been
reported for this gene. Gene subtypes and
mutations involved in MMA are shown in Table
3.
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Table 3. Subtypes and mutations in genes involved in MMA (HGMD data base)

Subtype Gene Mutation mtgzi?f Percentage
Missense/nonsense 187
Splice site mutation 24

; Small deletion 37

‘L’Jigrﬁﬁ‘ogge ° MUT Small insertion 20 2831
Small indel 3
Gross deletion 1
Missense/nonsense 30
Splice site mutation 4

chlA MMAA Small deletion 5 9.65
Small insertion 5
Gross deletion 1
Missense/nonsense 20
Splice site mutation 7

cbiB MMAB Regmatory_ 2 8.15
Small deletion 5
Small insertion 3
Small indel 1
Missense/nonsense 43
Splice site mutation 5
Small deletion 19

cbIC MMACHC Small insertion 8 17.39
Small indel 1
Gross deletion 4
Gross insertion 1
Missense/nonsense 8

cblD MMADHC Small deletion 2 2.79
Small insertion 3
Missense/nonsense 10
Splice site mutation 1

SUCLA2 SUCLA2 Gross deletion 1 3.01
Small indel 1
Small insertion 1

cblF LMBRD1 Not reported - 0

cbIX HCFC1 Not reported - 0

MCEE MCEE Missense/nonsense 3 0.64
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