Original article

The Expression of *CCAT2*, *UCA1*, *PANDA* and *GHET1* Long Non-coding RNAs in Lung Cancer

Farbod Esfandi^{1,2}, Hamid Fallah¹, Shahram Arsang-Jang³, Mohammad Taheri^{*4}, Soudeh Ghafouri-Fard^{*1}

Abstract

Background: Long non-coding RNAs (lncRNAs) have been considered to be prospective biomarkers for diagnosing lung cancer due to the fundamental roles they hold in the regulating several cancer-related pathways. *Methods:* Using the quantitative real-time polymerase chain reaction method, we evaluated the expression of *CCAT2*,

UCA1, PANDA and *GHET1* lncRNAs in 32 lung cancer tissue samples and their corresponding adjacent noncancerous tissues (ANCTs) from lung cancer patients admitted to the Labbafi-Nejad Hospital from 2015 to 2016.

Results: No significant differences were found in the expression of lncRNAs within the tumoral and nontumoral tissue samples. Bayesian Multilevel analysis showed no association between the expression of lncRNAs and the patient's tumor node metastasis (TNM) stage following adjustments for age. Spearman correlation analysis revealed an inverse correlation between the expression of *PANDA* in tumoral tissues and age. Additionally, the difference in *CCAT2* expression among the tumoral and non-tumoral tissues was inversely correlated with patients' age. Significant pairwise correlations were found between the expression of lncRNAs in both the tumoral and non-tumoral tissues.

Conclusions: Despite the findings supporting a role for the lncRNAs, *CCAT2*, *UCA1*, *PANDA* and *GHET1* in the pathogenesis of lung cancer, our data suggests no relationship for expression of these lncRNAs in lung cancer, questioning their potential as lung cancer biomarkers.

Keywords: CCAT2, GHET1, lncRNAs, Lung cancer, PANDA, UCA1.

Introduction

Globally, lung cancer is one of most prevalent causes of cancer-related deaths. Despite current medical interventions, the prognosis and survival rate of a diagnosed individual is very poor. This has created the necessity for understanding the biological pathways and genetic abnormalities involved in lung cancer pathogenesis in order to design more effective treatments. Several driver mutations have been characterized in lung cancer samples which have been implicated to hold a significant role in carcinogenesis. Additionally, genomic and transcriptomic sequencing methods have revealed long non-coding RNAs (lncRNAs) to be highly expressed in cancerous tissues and have a critical role in cancer pathogenesis. However, despite the fundamental roles of lncRNAs in the transcriptional, post-transcriptional, and epigenetic modification of genes, their patterns of gene expression are poorly characterized in lung cancer (1).

Although limited, previous research has examined the expression of various lncRNAs in lung cancer. Work by Qui *et al.* examined the expression profile of the lncRNA, *colon cancer-associated transcript 2 (CCAT2)*, in non-small cell lung cancer (NSCLC). Their findings revealed *CCAT2* to be over-expressed specifically within adenocarcinoma and not squamous

2: GenIran Lab, Tashkhis Gene Pajohesh, Tehran, Iran.

4: Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. *Corresponding author: Mohammad Taheri; Tel: +98 21 23872572, Fax: +98 21 23872572, E-mail: mohammad_823@yahoo.com & Soudeh Ghafouri-Fard; Tel: +98 21 23872572; Fax: +98 21 23872572; E-mail: s.ghafourifard@sbmu.ac.ir. Received: 14 May, 2018; Accepted: Jul 11, 2018

^{1:} Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

^{3:} Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran.

cell cancer. Furthermore, the over-expression of CCAT2 was associated with enhanced invasiveness of NSCLC (2). A separate study by Zhao et al. investigated the relationship between CCAT2 and its associated regulatory genes in the context of NSCLC. Over-expression of CCAT2 within NSCLC tissues was found to be accompanied by Pokemon over-Furthermore. CCAT2 expression. knockdown experiments resulted in a decrease in Pokemon expression, cell invasion and viability. Their findings suggest that the overexpression of CCAT2 promotes tumorigenesis via Pokemon over-expression (3). The IncRNA, urothelial carcinoma-associated 1 (UCA1), has also been shown to be over-expressed in NSCLC tissues. Increased UCA1 expression was found to result in significantly worse prognosis for the patient (4). The IncRNA, P21-associated noncoding RNA DNA damage-activated (PANDA), has been observed to be down-regulated in NSCLC tissues and be negatively associated with increased tumor size and advanced tumor node metastasis (TNM) stage. Furthermore, PANDA was shown to be a direct transcriptional target of p53 in NSCLCs in vitro and in vivo (5). Finally, the IncRNA, gastric carcinoma high expressed transcript 1 (GHET1) has been regarded as oncogenic in lung cancer based on its high expression within NSCLC tissues and its association with lymph node metastasis, TNM stage and patient survival (6). Based on these findings and the potential role for lncRNAs in lung cancer, we examined the expression of the lncRNAs, CCAT2, UCA1, PANDA and GHET1 in a cohort of Iranian patients with NSCLC to assess their potential

application as diagnostic or prognostic biomarkers for lung cancer within the Iranian population.

Materials and methods Patient Samples

Tumoral tissues and non-tumoral tissues of 32 patients (24 males and 8 females, mean age \pm SD=57.9 \pm 7.7) diagnosed with NSCLC were collected. All patients were admitted to Labbafi-Nejad Hospital during 2015 and 2016. Samples were harvested during surgery prior to receiving any form of radiotherapy or chemotherapy. Tissue samples were immediately flash frozen in liquid nitrogen and transferred to the genetic laboratory. Written informed consent was obtained from all study participants. The study was approved by the ethical committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.MSP.REC.1395.525).

LncRNA Expression Study

All tissue samples were subjected to RNA extraction and cDNA synthesis using the TRIzolTM Reagent (Invitrogen, Carlsbad, CA, USA) and the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). The transcript levels of lncRNAs (relative to *HPRT1* expression) were compared between the tumoral and non-tumoral tissues of each patient in the rotor gene 6000 corbett Real-Time PCR System using TaqMan® Universal PCR Master Mix (Applied Biosystems, Foster City, CA). The primer and probe sequences and the PCR product lengths are provided in Table 1.

Gene name	Primer and probe sequences	Primer and Primer and probe length	Amplicon length
-	F: AGCCTAAGATGAGAGTTC	18	
HPRT1	R: CACAGAACTAGAACATTGATA	21	88
	FAM -CATCTGGAGTCCTATTGACATCGC- TAMRA	24	
	F: GCGCTGACAGAGATTGCTTAC	21	
CCAT2	R: CCAGAGTAGAACAGGGGAAGC	21	141
	FAM-TGTGCTCCAAGTGCTTGCCAGGCT-TAMRA	24	
	F: TCTCCATTGGGTTCACCATTCC	22	
UCAI	R: GCTCTCGGCCTAATCTTGTGG	21	100
	FAM-AGCCATGCCCATCAGACAGCCAGC-TAMRA	24	
	F:GTTTTCCTGTTCGTCGATTCTGG	24	
PANDA	R: GGAAAGCTGAGAGAGAGACTTTGAAC	23	81
	FAM-CTGGACCACCTCTGAAGGCAGGCA -TAMRA	24	
	F: AGTCAGCTCCCTACAGAGGTG	21	
GHET1	R: TCCTTAGGTGGTGGTTTCTGTTC	23	94
	FAM-TCCCACTGCCCAAGATCCCTGCCT-TAMRA	24	

Table 1. The primer and probe sequences of each lncRNA and the PCR product length.

Statistical analysis

Relative expression of lncRNA levels in tumoral tissues compared with the ANCTs was calculated using the (Ln [Efficiency^\DCT]) formula. The significance between the mean values of transcript levels between the paired tumoral and non-tumoral tissue samples were determined via the Kruschke's Bayesian estimation and was used to fit two-sample Bayesian paired t-test. A student prior family was assumed for parameters with 200000 iterations and 5000 burn-outs. Highest Density Interval was described as the 95% credible interval calculated based on Bayesian approach. The

Spearman rank order correlation test was used to estimate the correlation between relative expression levels of lncRNAs and patients' age. Statistical analyses were performed using R software version 3.5. A *P* value of < 0.05 was considered statistically significant.

Results

Relative expression levels of lncRNAs in tumoral tissues compared to non-tumoral tissues

Expression analysis revealed no significant difference in the expression of lncRNAs among the tumoral tissues and the non-tumoral tissues (Table 2).

 Table 2. Bayesian t test for the comparison of relative gene expression between two paired samples (tumoral and non-tumoral tissues) (^a: computed from frequentist method).

Gene -	Posterior mean		Relative Expression	Standard	Effect Size	P-value ^a	95% Highest	
	Tumoral	Non-Tumoral	difference	Deviation	Effect Size	1 -value	Density Interval	
GHET1	2.94±3.73	3.05±4.27	0.016	5.43	0.004	0.885	[-1.74, 1.74]	
PANDA	2.31±4.2	1.83±4.26	0.508	4.32	0.119	0.511	[-0.89, 1.86]	
CCAT2	3.24±4.62	2.23±4.45	1.066	6.09	0.178	0.263	[-0.88, 3]	
UCA1	4.09±4.46	2.82±4.68	1.147	7.23	0.161	0.351	[-1.13, 3.46]	

The transcript levels of lncRNAs were also compared between samples with different TNM stages. Bayesian Multilevel analysis showed no association between the expression of lncRNAs and TNM stage after adjusting for patients' age (Table 3).

 Table 3. The results of Bayesian Multilevel analysis for the association of lncRNA expression and TNM stage following adjustments for age (Stage 1 was considered as reference).

	CCAT2				GHETI			UCAI			PANDA					
	Estimate	SE	P- value	95% Cil	Estimate	SE	P-value	95% Crl	Estimate	SE	P- value	95% Cil	Estimate	SE	P- value	95% Crl
Stage 2	1.82	2.9	.928	3.8,7.8]	4.3	2.55	0.29	[-0.75, 9.3]	3.55	3.38	.436	[-2.8, 10.3]	3.87	2.15	.14	[-32, 79]
Stage 3	85	2.77	.409	64,45]	1.89	2.16	0.84	[-2.56, 6.15]	0.24	3.69	.764	[-7.2, 69]	2.14	1.97	.294	[-1.7, 59]
Age	18	0.12	.036	-4,.06]	-0.06	0.11	0.652	[-0.27, 0.15]	-0.09	.15	.994	[-38, .19]	0.01	0.09	.918	[16, 17]

We assessed the correlation between the expression of lncRNAs and patients' age (Table 4). Spearman correlation analysis revealed an inverse correlation between *PANDA* expression in tumoral tissues and patients' age. Moreover, the expression of *CCAT2* in tumoral and non-tumoral tissues was inversely correlated with patients' age.

 Table 4. Spearman correlation examining the expression of IncRNAs and age

-	IICKINA	s anu age.			
	CCAT2	GHET1	UCA1	PANDA	
Tumor	177	151	12	361*	
Non-Tumor	.25	0.105	.187	251	
Expression difference	306*	199	184	145	
	1.01				

*Correlation is significant at the 0.05 level.

Finally, we assessed pairwise correlations between the expression of lncRNAs in both tumoral and nontumoral tissues. Our findings show a significant correlation among the different types of tissues (Table 5).

		CCAT2	GHET1	UCA1
	Tumor	.591**	.644**	.556**
PANDA	Non-Tumor	.482**	.589**	.735**
	Expression Difference	0.71**	0.754**	0.788**
	Tumor	.57**	.326*	
UCA1	Non-Tumor	.752**	.744**	
	Expression Difference	.738**	0.512**	
	Tumor	.584**		
GHET1	Non-Tumor	.583**	_	
	Expression Difference	0.661**	_	

Table 5. Pairwise correlation between the expression levels of lncRNAs in tumor and non-tumor tissue samples.

Discussion

In the present study, we assessed the expression of four previously identified lncRNAs in the cancerous lung tissue in a cohort of Iranian patients with NSCLC to evaluate their potential diagnostic power within the Iranian population. Despite the previous research indicating a role for these IncRNAs in lung cancer, our findings did not show any significant differences in their expression when comparing the tumoral and non-tumoral tissues of patients. Such findings call into question the validity of these lncRNAs as potential biomarkers for lung cancer. In line with our data, Yang et al. did not find any significant difference in PANDA expression between the tumoral and non-tumoral lung samples within a cohort of Chinese patients (7). The discrepancies between our results and the results of previous work may be explained by sample size, differences in the etiology of lung cancer and differences in the genetic background of patients. Among different populations, there may be a distinct lncRNA signature. Several lines of evidence point towards an influence for environmental pollutants in modulating the expression of lncRNAs in both in vivo animal models and in humans. For example, Martinez-Guitarte et al. observed an up-regulation of certain IncRNAs following 24-hour exposure to bisphenol A (BPA) (8). Bhan et al. has previously reported a

dysregulation in the expression of the lncRNA, HOX transcript antisense intergenic RNA (HOTAIR), due to BPA and diethylstilbestrol (DES) exposure (9). Furthermore, smoking has been demonstrated to alter the expression of several IncRNAs involved in the metabolic function and immune response within lungs (10). Additional studies have shown that a dysregulation of the IncRNAs, HOTAIR and MALAT1 (Metastasis associated lung adenocarcinoma transcript 1) in human bronchial epithelial cells occurs following exposure to cigarette smoke extract (11, 12). Therefore, it is possible that among different populations where the incidence of smoking is highly variable, the influence environmental influence on lncRNA expression within the lung tissues is also variable, which can lead to distinct patterns in lncRNA expression among different populations.

We also compared the expression of lncRNAs between distinct TMN stages using Bayesian Multilevel analysis. Our results show no association between the expression of lncRNAs and TNM stage after adjusting for age. These findings further question their potential application as prognostic markers. Consistent with our data, Qiu *et al.* found no significant association between *CCAT2* expression and TNM stage in lung cancer patients (2). However, *GHET1*, *UCA1* and *PANDA* expression has been previously found to be associated with TNM stage (5, 6, 13). Such inconsistencies within the literature may be due to the application of different statistical methods and not accounting for the potential effects of confounding variables.

Spearman correlation analysis revealed an inverse correlation between *PANDA* expression in tumoral tissues and the patients' age. Moreover, the difference in *CCAT2* expression among tumoral and non-tumoral tissues was inversely correlated with patients' age. Age-related patterns of lncRNAs expression has been previously described in several cell types, including oocytes (14) and neurons (15). The observed age-related gene signature may reflect the differences in the length of exposure to environmental risk factors. This potential factor should be assessed in a largescale epidemiological study.

References

1. Tao H, Yang JJ, Zhou X, Deng ZY, Shi KH, Li J. Emerging role of long noncoding RNAs in lung cancer: Current status and future prospects. Resp Med. 2016 Jan;110:12-9.

2. Qiu M, Xu Y, Yang X, Wang J, Hu J, Xu L, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of nonsmall cell lung cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014 Jun;35(6):5375-80.

3. Zhao Z, Wang J, Wang S, Chang H, Zhang T, Qu J. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Mar;87:692-7.

4. Nie W, Ge HJ, Yang XQ, Sun X, Huang H, Tao X, et al. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer letters. 2016 Feb 1;371(1):99-106. Han L, Zhang EB, Yin DD, Kong R, Xu TP, Chen WM, et al. Low expression of long noncoding RNA PANDAR predicts a poor Finally, we detected significant pairwise correlations between the expression of the examined lncRNAs in the tumoral and non-tumoral tissues suggesting the presence of regulatory mechanisms within the tissues. Such significant correlations indicate that the expression level of a certain lncRNA may be based on the expression of other lncRNAs.

In conclusion, similar patterns of lncRNAs expression between tumoral and non-tumoral tissues in this cohort of Iranian patients highlights the significance of population-based studies for biomarker discovery and targeted therapies.

Acknowledgment

The current study was supported by a grant from Shahid Beheshti University of Medical Sciences.

The authors declare they have no conflicts of interest.

prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell death & disease. 2015 Feb 26;6:e1665.

5. Guan ZB, Cao YS, Li Y, Tong WN, Zhuo AS. Knockdown of lncRNA GHET1 suppresses cell proliferation, invasion and LATS1/YAP pathway in non small cell lung cancer. Cancer biomarkers: section A of Disease markers. 2018 Feb 14;21(3):557-63.

6. Yang KY, Shen ZQ, He YF, Rizal K, Tan H, Chen AN, Huang YC, Zhao GQ, Lei YJ. Expression of PANDA, LincRNA-p21, PUMA in lung tissues of lung cancer patients in the Xuanwei and non-Xuanwei areas of Yunnan Province. Age. 2017;54(9.62):58-33.

7. Martinez-Guitarte JL, Planello R, Morcillo G. Overexpression of long non-coding RNAs following exposure to xenobiotics in the aquatic midge Chironomus riparius. Aquatic toxicology (Amsterdam, Netherlands). 2012 Apr;110-111:84-90.

8. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. The Journal of steroid biochemistry and molecular biology. 2014 May;141:160-70.

9. Bi H, Zhou J, Wu D, Gao W, Li L, Yu L, et al. Microarray analysis of long non-coding RNAs in COPD lung tissue. Inflammation research: official journal of the European Histamine Research Society [et al]. 2015 Feb;64(2):119-26.

10. Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, et al. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicology and applied pharmacology. 2015 Jan 1;282(1):9-19.

11. Lu L, Luo F, Liu Y, Liu X, Shi L, Lu X, et al. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelialmesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicology and applied pharmacology. 2015 Dec 1;289(2):276-85.

12. Wang HM, Lu JH, Chen WY, Gu AQ. Upregulated lncRNA-UCA1 contributes to progression of lung cancer and is closely related to clinical diagnosis as a predictive biomarker in plasma. Int J Clin Exp Med. 2015;8(7):11824-30.

13. Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaitre JM, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018 Feb 2;8(1):2202.

14. Pereira Fernandes D, Bitar M, Jacobs FMJ, Barry G. Long Non-Coding RNAs in Neuronal Aging. Non-coding RNA. 2018 Apr 18;4(2).