Volume 12, Issue 3 (Vol.12 No.3 Oct 2023)                   rbmb.net 2023, 12(3): 425-437 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Li J, Wang X, Chen L, Duan L, Tan F, Li K et al . SARS-CoV‑2 and Its Omicron Variants Detection with RT-RPA -CRISPR/Cas13a-Based Method at Room Temperature. rbmb.net 2023; 12 (3) :425-437
URL: http://rbmb.net/article-1-1237-en.html
Translational Medicine Institute, the First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, Hunan, China & National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
Abstract:   (1033 Views)
Background: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global health crisis, with genetic mutations and evolution further creating uncertainty about epidemic risk. It is imperative to rapidly determine the nucleic acid sequence of SARS-CoV-2 and its variants to combat the coronavirus pandemic. Our goal was to develop a rapid, room-temperature, point-of-care (POC) detection system to determine the nucleic acid sequences of SARS-CoV-2 isolates, especially omicron variants.

Methods: Based on the conserved nucleotide sequence of SARS-CoV-2, bioinformatics software was used to analyze, design, and screen optimal enzymatic isothermal amplification primers and efficient CRISPR RNAs (crRNAs) of CRISPR/Cas13a to the target sequences. Reverse transcription-recombinase polymerase amplification (RT-RPA) was used to amplify the virus, and CRISPR/Cas13a-crRNA was used to cleave the SARS-CoV-2 target sequence. The sensitivity of nucleic acid detection was assessed by serial dilution of plasmid templates. All reactions were performed at room temperature.

Results: RT-RPA, combined with CRISPR/Cas13a, can detect the SARS-CoV-2 with a minimum content of 102 copies/μL, and can effectively distinguish between the original strain and the Omicron variant with a minimum limit of detection (LOD) of 103 copies/μL.

Conclusion: The method developed in this study has potential application in clinical detection of SARS-CoV-2 and its omicron variants.
 
Full-Text [PDF 524 kb]   (452 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/08/29 | Accepted: 2024/01/14 | Published: 2024/02/25

References
1. Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61(3):180-202. [DOI:10.1002/jobm.202000537] [PMID] []
2. Hadj Hassine I. Covid-19 vaccines and variants of concern: A review. Rev Med Virol. 2022;32(4):e2313. [DOI:10.1002/rmv.2313] [PMID] []
3. Meo SA, Meo AS, Al-Jassir FF, Klonoff DC. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci. 2021;25(24):8012-8.
4. Thakur V, Ratho RK. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol. 2022;94(5):1821-4. [DOI:10.1002/jmv.27541] [PMID]
5. Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins. 2021;89(5):569-76. [DOI:10.1002/prot.26042] [PMID] []
6. Koley T, Kumar M, Goswami A, Ethayathulla AS, Hariprasad G. Structural modeling of Omicron spike protein and its complex with human ACE-2 receptor: Molecular basis for high transmissibility of the virus. Biochem Biophys Res Commun. 2022;592:51-3. [DOI:10.1016/j.bbrc.2021.12.082] [PMID] []
7. Bazargan M, Elahi R. OMICRON: Virology, immunopathogenesis, and laboratory diagnosis. J Genet Med. 2022;24(7):e3435. [DOI:10.1002/jgm.3435] [PMID] []
8. Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, et al. Rapid, point- of- care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2022;7(7):CD013705. [DOI:10.1002/14651858.CD013705.pub3] [PMID] []
9. Ejazi SA, Ghosh S, Ali N. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunol Cell Biol. 2021;99(1):21-33. [DOI:10.1111/imcb.12397] [PMID]
10. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science (New York, NY). 2013;339(6121):823-6. [DOI:10.1126/science.1232033] [PMID] []
11. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science (New York, NY). 2018;361(6405):866-9. [DOI:10.1126/science.aat5011] [PMID] []
12. Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a Tool for RNA Interference. Trends Plant Sci. 2018;23(5):374-8. [DOI:10.1016/j.tplants.2018.03.003] [PMID]
13. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (New York, NY). 2016;353(6299):aaf5573. [DOI:10.1126/science.aaf5573] [PMID] []
14. Smargon AA, Cox DBT, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol cell. 2017;65(4):618-30.e7. [DOI:10.1016/j.molcel.2016.12.023] [PMID] []
15. Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, et al. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol adv. 2019;37(5):708-29. [DOI:10.1016/j.biotechadv.2019.03.016] [PMID]
16. Gootenberg JS, Abudayyeh OO. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (New York, NY). 2017;356(6336):438-42. [DOI:10.1126/science.aam9321] [PMID] []
17. Gootenberg JS, Abudayyeh OO. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (New York, NY). 2018;360(6387):439-44. [DOI:10.1126/science.aaq0179] [PMID] []
18. Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell discov. 2018;4:63. [DOI:10.1038/s41421-018-0069-3] [PMID] []
19. Caliendo AM, Hodinka RL. A CRISPR Way to Diagnose Infectious Diseases. N Engl J Med. 2017;377(17):1685-7. [DOI:10.1056/NEJMcibr1704902] [PMID]
20. Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D, et al. CRISPR-Cas systems for diagnosing infectious diseases. Methods (San Diego, Calif). 2022;203:431-46. [DOI:10.1016/j.ymeth.2021.04.007] [PMID] []
21. Myhrvold C, Freije CA. Field-deployable viral diagnostics using CRISPR-Cas13. Science (New York, NY). 2018;360(6387):444-8. [DOI:10.1126/science.aas8836] [PMID] []
22. Chang Y, Deng Y, Li T, Wang J, Wang T, Tan F, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a. Transbound Emerg Dis. 2020;67(2):564-71. [DOI:10.1111/tbed.13368] [PMID]
23. Fozouni P, Son S, Díaz de León Derby M, Knott GJ, Gray CN, D'Ambrosio MV, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021;184(2):323-33.e9. [DOI:10.1016/j.cell.2020.12.001] [PMID] []
24. Steens JA, Zhu Y, Taylor DW. SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nat Commun. 2021;12(1):5033. [DOI:10.1038/s41467-021-25337-5] [PMID] []
25. Hu F, Liu Y, Zhao S, Zhang Z, Li X, Peng N, et al. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens Bioelectron. 2022;202:113994. [DOI:10.1016/j.bios.2022.113994] [PMID] []
26. Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MW, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv [Preprint]. 2020:2020.05.04.20091231. [DOI:10.1101/2020.05.04.20091231]
27. Liang Y, Lin H, Zou L, Zhao J, Li B. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern. Microbiol Spectr. 2021;9(3):e0101721. [DOI:10.1128/Spectrum.01017-21] [PMID] []
28. Wang Y, Xue T, Wang M, Ledesma-Amaro R, Lu Y, Hu X, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem. 2022;362:131765. [DOI:10.1016/j.snb.2022.131765] [PMID] []
29. Wang Y, Zhang Y, Chen J, Wang M, Zhang T, Luo W, et al. Detection of SARS-CoV-2 and Its Mutated Variants via CRISPR-Cas13-Based Transcription Amplification. Anal Chem. 2021;93(7):3393-402. [DOI:10.1021/acs.analchem.0c04303] [PMID]
30. Christie KA, Guo JA, Silverstein RA, Doll RM. Precise DNA cleavage using CRISPR-SpRYgests. Nat Biotechnol. 2022;41(3):409-16. [DOI:10.1038/s41587-022-01492-y] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb