1. Agrawal S, Walia G. Prevalence and risk factors for symptoms suggestive of pre-eclampsia in Indian women. J Women's Health. 2014;3(6):2-9. [
DOI:10.4172/2325-9795.1000169]
2. Fikadu K, Getahun F, Chufamo N, Misiker D. Family history of chronic illness, preterm gestational age and smoking exposure before pregnancy increases the probability of preeclampsia in Omo district in southern Ethiopia: a case-control study. Clinical Hypertension. 2020;26(1):1-12. [
DOI:10.1186/s40885-020-00149-9] [
PMID] [
PMCID]
3. Zerón HM, Parada-Flores A, Chávez AA, García MVD. Oxidative stress in preeclampsia, more than enzymes. Revista Latinoamericana de Hipertensión. 2013;8(2):25-8.
4. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ (Clinical research ed). 2019;366:l2381. [
DOI:10.1136/bmj.l2381] [
PMID]
5. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clinical journal of the American Society of Nephrology : CJASN. 2016;11(6):1102-13. [
DOI:10.2215/CJN.12081115] [
PMID] [
PMCID]
6. Aouache R, Biquard L, Vaiman D. Oxidative Stress in Preeclampsia and Placental Diseases. 2018;19(5). P [
DOI:10.3390/ijms19051496] [
PMID] [
PMCID]
7. Namdari S, Saadat M. Susceptibility to preeclampsia is associated with a 50-bp insertion/deletion polymorphism at the promoter region of the SOD1 gene. 2021;22(4):268-72. [
DOI:10.4274/jtgga.galenos.2021.2021.0005] [
PMID] [
PMCID]
8. Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients. 2021;13(12). [
DOI:10.3390/nu13124456] [
PMID] [
PMCID]
9. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature genetics. 2009;41(2):178-86. [
DOI:10.1038/ng.298] [
PMID] [
PMCID]
10. Javadi A, Shamaei M, Mohammadi Ziazi L, Pourabdollah M, Dorudinia A, Seyedmehdi SM, et al. Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos. 2014;13(4):41-7.
11. Rahimi Z, Ghorbani Z, Motamed H, Jalilian N. Aberrant expression profile of miR-32, miR-98 and miR-374 in chronic lymphocytic leukemia. Leukemia research. 2021;111:106691. [
DOI:10.1016/j.leukres.2021.106691] [
PMID]
12. Sant KE, Nahar MS, Dolinoy DC. DNA methylation screening and analysis. Methods in molecular biology (Clifton, NJ). 2012;889:385-406. [
DOI:10.1007/978-1-61779-867-2_24] [
PMID] [
PMCID]
13. Cai Z, Jia X, Liu M, Yang X, Cui L. Epigenome-wide DNA methylation study of whole blood in patients with sporadic amyotrophic lateral sclerosis. Chinese medical journal. 2022;135(12):1466-73. [
DOI:10.1097/CM9.0000000000002090] [
PMID] [
PMCID]
14. Rezvani N, Alibakhshi R, Vaisi-Raygani A, Bashiri H, Saidijam M. Detection of SPG20 gene promoter-methylated DNA, as a novel epigenetic biomarker, in plasma for colorectal cancer diagnosis using the MethyLight method. Oncology letters. 2017;13(5):3277-84. [
DOI:10.3892/ol.2017.5815] [
PMID] [
PMCID]
15. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nature reviews Genetics. 2011;12(8):529-41. [
DOI:10.1038/nrg3000] [
PMID] [
PMCID]
16. Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, et al. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. 2020;11(1):36. [
DOI:10.1186/s13293-020-00313-8] [
PMID] [
PMCID]
17. Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, et al. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Molecular cancer. 2011;10:85. [
DOI:10.1186/1476-4598-10-85] [
PMID] [
PMCID]
18. Mayne BT, Leemaqz SY, Smith AK, Breen J, Roberts CT, Bianco-Miotto T. Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics. 2017;9(3):279-89. [
DOI:10.2217/epi-2016-0103] [
PMID] [
PMCID]
19. Martinez-Fierro ML, Garza-Veloz I, Carrillo-Sanchez K, Martinez-Gaytan V, Cortes-Flores R, Ochoa-Torres MA, et al. Expression levels of seven candidate genes in human peripheral blood mononuclear cells and their association with preeclampsia. Hypertension in pregnancy. 2014;33(2):191-203. [
DOI:10.3109/10641955.2013.853777] [
PMID] [
PMCID]
20. Ching T, Song MA, Tiirikainen M, Molnar J, Berry M, Towner D, et al. Genome-wide hypermethylation coupled with promoter hypomethylation in the chorioamniotic membranes of early onset pre-eclampsia. Molecular human reproduction. 2014;20(9):885-904. [
DOI:10.1093/molehr/gau046] [
PMID] [
PMCID]
21. Feng C, Lu Q. Dysregulation of endogenous anti-oxidants in placentae of preeclampsia via epigenetic variation. Fertility and Sterility. 2015;104(3):e147-e8. [
DOI:10.1016/j.fertnstert.2015.07.455]
22. Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, et al. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2017;1865(9):1207-14. [
DOI:10.1016/j.bbapap.2017.07.003] [
PMID]
23. Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, et al. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. Biochimica et biophysica acta Proteins and proteomics. 2017;1865(9):1207-14. [
DOI:10.1016/j.bbapap.2017.07.003] [
PMID]