Volume 12, Issue 1 (Vol.12 No.1 Apr 2023)                   rbmb.net 2023, 12(1): 195-204 | Back to browse issues page

XML Print

Medical Biochemistry and Molecular Biology Department. Faculty of Medicine, Cairo University, Egypt.
Abstract:   (1144 Views)
Background: Autophagy has been proven to contribute to maintaining eukaryotic cells’ normal intracellular homeostasis, whereas autophagy malfunction may predispose to Behcet Disease (BD). The accumulation of the products of autophagic degradation as well as impairment in autophagic flux in cases with BD, may be attributed to dysregulated miRNA-155 expression. This study attempts to determine the contribution of circRNA-0067835 in miRNA-155-mediated modulation of the autophagy axis as well as to investigate its impact on the production of pro-inflammatory cytokines in BD.

Methods: This study was carried out on 40 cases with BD and 40 healthy control subjects. The collection of serum samples was done before performing a real-time PCR to estimate the relative gene expression of ATG1, AKT, miRNA-155, mTOR, TAB2, and circRNA-0067835. Additionally, IL-1β, IL-17, and TNF-α serum levels were determined by ELISA.

Results: Behcet Disease (BD) patients had significantly upregulated circRNA-0067835, with subsequent downregulation of its target gene, miRNA-155 than controls (P<0.05). In addition, decreased miRNA-155 gene expression was correlated with significantly increased TAB2 gene expression levels in BD patients compared to the controls (P<0.05). Furthermore, enhanced production of pro-inflammatory cytokines was detected in cases with BD than in controls.

Conclusions: The correlation between circRNA-0067835 and miRNA-155 fairly contributes to the regulation of cytokine production in BD via the modulation of autophagy. The investigation of the circRNA-0067835 and the microRNA-155 and their downstream adaptor molecules could be a potential therapeutic agent for BD.

Full-Text [PDF 386 kb]   (860 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/04/12 | Accepted: 2023/05/30 | Published: 2023/08/15

1. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci. 2004;24(20):4787-4795. [DOI:10.1523/JNEUROSCI.5491-03.2004] [PMID] [PMCID]
2. Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells. Clin Exp Immunol. 2014;177(2):521-530. [DOI:10.1111/cei.12352] [PMID] [PMCID]
3. Hatemi G, Yazici Y, Yazici H. Behçet's syndrome. Rheum Dis Clin North Am. 2013;39(2):245-261. [DOI:10.1016/j.rdc.2013.02.010] [PMID]
4. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699-712. [DOI:10.1038/nrm3679] [PMID] [PMCID]
5. Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer. 2010;103(8):1144-1148. [DOI:10.1038/sj.bjc.6605901] [PMID] [PMCID]
6. Shaker O, Mahfouz H, Salama A, Medhat E. Long Non-Coding HULC and miRNA-372 as Diagnostic Biomarkers in Hepatocellular Carcinoma. Rep Biochem Mol Biol. 2020;9(2):230-240. [DOI:10.29252/rbmb.9.2.230] [PMID] [PMCID]
7. Liang L, Zhou Q, Feng L. Decreased microRNA-155 in Behcet's disease leads to defective control of autophagy thereby stimulating excessive proinflammatory cytokine production. Arthritis Res Ther. 2021;23(1):135. [DOI:10.1186/s13075-021-02517-8] [PMID] [PMCID]
8. Adil A, Goyal A, Quint JM. Behcet Disease. Treasure Island (FL) StatPearls Publishing. 2023.
9. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy. 2013;9(7):951-972. [DOI:10.4161/auto.24273] [PMID] [PMCID]
10. Boutouja F, Stiehm CM, Platta HW. mTOR: A Cellular Regulator Interface in Health and Disease. Cells. 2019;8(1):18. [DOI:10.3390/cells8010018] [PMID] [PMCID]
11. Park HJ, Son HJ, Sul OJ, Suh JH, Choi HS. 4-Phenylbutyric acid protects against lipopolysaccharide-induced bone loss by modulating autophagy in osteoclasts. Biochem Pharmacol. 2018;151:9-17. [DOI:10.1016/j.bcp.2018.02.019] [PMID]
12. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-157. [DOI:10.1261/rna.035667.112] [PMID] [PMCID]
13. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-338. [DOI:10.1038/nature11928] [PMID]
14. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-388. [DOI:10.1038/nature11993] [PMID]
15. Abdelgwad M, Zakaria R, Marzouk S, Sabry D, Ahmed R, Badary HA, Samir M. The Emerging Role of Circular RNA Homeodomain Interacting Protein Kinase 3 and Circular RNA 0046367 through Wnt/Beta-Catenin Pathway on the Pathogenesis of Nonalcoholic Steatohepatitis in Egyptian Patients. Rep Biochem Mol Biol. 2023;11(4):614-625. [DOI:10.52547/rbmb.11.4.614] [PMID] [PMCID]
16. Zeng X, Yuan X, Cai Q, Tang C, Gao J. Circular RNA as an epigenetic regulator in chronic liver diseases. Cells. 2021;10(8):1945. [DOI:10.3390/cells10081945] [PMID] [PMCID]
17. Criteria for diagnosis of Behçet's disease. International Study Group for Behçet's Disease. Lancet. 1990;335(8697):1078-1080. [DOI:10.1016/0140-6736(90)92643-V]
18. International Team for the Revision of the International Criteria for Behçet's Disease (ITR-ICBD). The International Criteria for Behçet's Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28(3):338-347. [DOI:10.1111/jdv.12107] [PMID]
19. Lawton G, Bhakta BB, Chamberlain MA, Tennant A. The Behcet's disease activity index. Rheumatology (Oxford). 2004;43(1):73-8 [DOI:10.1093/rheumatology/keg453] [PMID]
20. Gul FC, Nazik H, Cicek D, Demir B. Activity Criteria in Behçet's Disease [Internet]. Behcet's Disease. InTech; 2017. [DOI:10.5772/68079]
21. Krause I, Uziel Y, Guedj D, Mukamel M, Harel L, Molad Y, Weinberger A. Childhood Behçet's disease: clinical features and comparison with adult-onset disease. Rheumatology (Oxford). 1999;38(5):457-62. [DOI:10.1093/rheumatology/38.5.457] [PMID]
22. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-8. [DOI:10.1038/nprot.2008.73] [PMID]
23. Chan, Felix T, H J, Qi. An innovative performance measurement method for supply chain management. Supply Chain management. 2003;8(3-4):209-223. [DOI:10.1108/13598540310484618]
24. Gong GH, An FM, Wang Y, Bian M, Wang D, Wei CX. Comprehensive Circular RNA Profiling Reveals the Regulatory Role of the CircRNA-0067835/miR-155 Pathway in Temporal Lobe Epilepsy. Cell Physiol Biochem. 2018;51(3):1399-1409. [DOI:10.1159/000495589] [PMID]
25. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41. [DOI:10.1038/ncb2152] [PMID] [PMCID]
26. Giriş M, Bireller S, Küçükali Cİ, Hanağasi H, Değirmencioğlu S, Tüzün E. Impact of Neuro-Behçet Disease Immunoglobulin G on Neuronal Apoptosis. Noro Psikiyatr Ars. 2017;54(1):67-71. [DOI:10.5152/npa.2016.19421] [PMID] [PMCID]
27. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12(7):1129-1152. [DOI:10.1080/15548627.2016.1178446] [PMID] [PMCID]
28. Yong C, Dan L, Chenhong L, Yan S, Jianfei C, Jianlong G, et al. Efficacy and safety of metformin for Behcet's disease and its effect on Treg/Th17 balance: a single-blinded, before-after study. Nan Fang Yi Ke Da Xue Xue Bao. 2019;39(2):127-133.
29. Palizgir MT, Akhtari M, Shahram F, Mostafaei S, Maassoomeh A, Sobhani S, Milad Mahmoudi Downregulation. of. autophagy- related genes in macrophages from patients with behcet's disease. Crescent J Med Biol Sci. 2017;5(1):14-20.
30. Okamoto T, Ozawa Y, Kamoshita M, Osada H, Toda E, Kurihara T, et al. The neuroprotective effect of rapamycin as a modulator of the mTOR-NF-KB axis during retinal inflammation. PloS one. 2016;11(1):e0146517. [DOI:10.1371/journal.pone.0146517] [PMID] [PMCID]
31. Gratton R, Tricarico PM, D'adamo AP, Bianco AM, Moura R, Agrelli A, et al. Notch signaling regulation in autoinflammatory diseases. Int J of Mol Sci. 2020;21(22):8847. [DOI:10.3390/ijms21228847] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.