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Abstract 

Background: Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) 

exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study 

endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin 

genes within the Hep-G2 cell line. 

Methods: In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ 

containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were 

executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b 

expression was conducted through SYBR green-based real-time PCR, and the expression of the 

Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was 

quantified using the same method. 

Results: The real-time PCR analysis revealed a significant upregulation of fibrinogen genes—α 

(P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. 

Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells 

harboring ORF9b compared to the control cells (P=0.028). 

Conclusion: The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of 

SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while 

suppressing the albumin gene. Further investigations are warranted to validate these observations across 

various SARS-CoV-2 strains exhibiting differing levels of pathogenicity. 
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Introduction 
Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2), commonly 

known as the 2019 novel coronavirus (2019-

nCoV), was first identified in late December 

2019 (1). Coronavirus disease 2019 (COVID-

19), a respiratory tract infection caused by 

SARS-CoV-2, manifests across a clinical 

spectrum, ranging from asymptomatic cases 

to acute respiratory distress syndrome (2). 

The outcome of infection can be impacted by 

various host factors, such as health status, 

age, genetic makeup, and virus- related  

 

 
elements, including the genetic composition 

of the virus (3, 4). SARS-CoV-2 shares a 

range of proteins with other coronaviruses, 

including 16 nonstructural proteins (nsp1-16) 

and four key structural proteins (S, E, M, and 

N proteins). In addition to these shared 

proteins, SARS-CoV-2 possesses its own 

distinct set, comprising ORF3a, ORF 3b, 

ORF6, ORF7a, ORF7b, ORF8a, and ORF9b 

(5, 6). These specific proteins, designated as 

accessory proteins due to their perceived non-

essential role in virus replication, have been 
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highlighted in research for their importance in 

facilitating virus-host interaction and 

pathogenesis (6, 7).  

The ORF9b protein is encoded by an 

alternate open reading frame situated within 

the N gene (8). Previous studies have revealed 

the presence of antibodies targeting ORF9b in 

the serum of individuals who recovered from 

either SARS-CoV or SARS-CoV-2 (9, 10). 

Through its interaction with the adaptable 

adapter translocase of outer mitochondrial 

membrane protein 70 (TOM70) within the 

mitochondria, this protein has been shown to 

significantly inhibit the production of IFN-I 

(11). 

A study suggests that the proteins NSP4 and 

ORF9b encoded by SARS-CoV-2 

synergistically induce the release of 

mitochondrial DNA (mtDNA) (12). Previous 

research has underscored the crucial role of 

mitochondria in regulating essential pathways 

associated with the pro-inflammatory response 

and antiviral signaling (13). Circulating 

mtDNA levels have been proposed as a 

potential biomarker for evaluating both pro-

inflammatory reactions and the severity of 

COVID-19, as indicated by a separate study 

(14). However, a comprehensive 

understanding of the molecular mechanisms 

underlying mtDNA release during 

pathological conditions, particularly in the 

context of SARS-CoV-2 infection, remains 

elusive.  

Fibrinogen, a crucial protein implicated in 

blood clotting and thrombosis, serves as a 

positive acute phase reactant, as it tends to 

increase during inflammatory responses (15). 

Observations suggest that individuals with 

COVID-19 often display heightened 

fibrinogen levels (16). Autopsies conducted on 

COVID-19 patients have revealed the presence 

of fibrin-rich thrombi within pulmonary 

capillaries and small arteries (17).  

Furthermore, research consistently 

demonstrates a correlation between COVID-

19 infection and hypoalbuminemia(18). 

Albumin, a protein exhibiting negative acute 

phase reactivity, is known to be downregulated 

during inflammatory responses, and it plays a 

critical role in the body's antioxidant defense 

system. Hypoalbuminemia has been associated 

with an inflammatory response and an 

unfavorable prognosis in viral diseases, 

including COVID-19 (18). The objective of 

the present investigation was to evaluate the 

influence of SARS-CoV-2 ORF9b 

transfection on the expression of the 

fibrinogen and albumin genes in the Hep-G2 

cell line. 

Materials and Methods 
Cell culture and transfection  

The Hep-G2 cell line was employed in this 

study and cultured using DMEM 

supplemented with 10% Fetal Bovine Serum 

(FBS), following standard procedures. For 

transfection, the plasmid pcDNA3.1 hyg+ 

containing ORF9b from the SARS-CoV-2 

Wuhan strain was used, alongside a control 

lacking the gene. Transfection protocols were 

conducted using DNAfectamin (Biobasic, 

Canada) according to the manufacturer's 

instructions. To isolate transfected cells 

expressing ORF9b, 24 hours post-transfection, 

hygromycin B (Biobasic, Canada) at a 

concentration of 250 μg/mL was introduced 

into the cell culture medium for 7 days. After 

this period, only cells containing the plasmid 

were survived. 

Total RNA extraction and cDNA synthesis  

Total RNA was extracted from cell cultures 

using an RNA isolation kit (Dena Zist, 

Mashhad, Iran) as per the manufacturer's 

instructions. The concentration and quality of 

the extracted total RNA were assessed using 

spectrophotometry (NanodropTM 

Spectrophotometer, Thermo Scientific, USA) 

and gel electrophoresis, respectively. To 

eliminate plasmid contamination, the total 

RNA underwent RNAse-free DNAse 

treatment using Sinaclon from Tehran, Iran. 

Subsequently, cDNA synthesis was carried out 

through reverse transcription (RT) following 

the manufacturer's guidelines, utilizing an 

EasycDNA Synthesis kit (Parstos, Mashhad, 

Iran). 
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Design of primers and real-time PCR 

The process of designing primers was 

performed by using primer design software, 

which relied on the NCBI gene database as a 

reference (refer to Table 1). The SYBR Green 

chemistry was utilized in real-time PCR to 

validate the expression of the ORF9b and to 

measure the expression levels of the albumin 

(ALB Gene ID: 213), fibrinogen α (FGA Gene 

ID: 2243), fibrinogen β (FGB Gene ID: 2244), 

and fibrinogen γ (FGG Gene ID: 2266) genes. 

The QuantStudio 3TM real-time PCR system, 

manufactured by Applied Biosystems located 

in Grand Island, New York, United States, was 

utilized to assess gene expression. The Beta-

actin gene was utilized as the reference gene 

(19). Each reaction employed a final volume of 

15 μL, comprising 2× Master Mix Green 

 

(Ampliqon Inc., Denmark) at 7.5 μL, 1 μL of 

cDNA, 0.4 μL of each primer (10-pmoL 

concentration), and 5.7 μL of water. Cycling 

parameters consisted of an initial denaturation 

phase at 95 °C for 15 minutes, followed by 40 

cycles of 95 °C for 15 seconds, and 

annealing/extension at 60 °C (or 58 °C for the 

fibrinogen γ gene) for 1 minute. Confirmation 

of amplification for a single target in each gene 

test reaction was achieved, with the absence of 

primer dimer formation confirmed by 

analyzing melting curves of all amplifications. 

Product dimensions were determined using gel 

electrophoresis to run real-time PCR products, 

yielding products of 192, 163, 229, and 174 bp 

for the genes encoding albumin, fibrinogen α, 

fibrinogen β, and fibrinogen γ, respectively. 

 
Table 1. Sequences of primers were used in real-time PCR. 

Gene Name Primer Sequences (5’-3’) 

Albumin 
Forward TCAGTATCTTCAGCAGTGTCCAT 

Reverse GCACAGCAGTCAGCCATT-3΄ 

Fibrinogen A chain 
Forward CAGCCAATAACCGTGATAATACCT 

Reverse ATGTCCACCTCCAGTCGTT 

Fibrinogen β chain 
Forward ACTTAGCACTCTCCACTTAGCA 

Reverse CCGACAGCATTAACTCAAGCATA 

Fibrinogen γ chain 
Forward ACAGTGCCAGGAACCTTG 

Reverse CATCCATTTCCAGACCCATCG 

Beta actin 
Forward (19) GCCTTTGCCGATCCGC 

Revers (19) GCCGTAGCCGTTGTCG 

 

Verification of ORF9b expression  

After extracting RNA from the transfected 

cells, it underwent treatment with RNase-free 

DNase (Sinaclon, Tehran, Iran) to remove any 

plasmid contamination. Real-time PCR was 

employed to confirm the expression of ORF9b. 

The experimental negative control entailed 

using RNA subjected to DNase treatment. 

Data analysis 

The 2-∆∆Ct values derived from real-time PCR 

experiments underwent statistical scrutiny 

utilizing the Mann-Whitney U test in 

GraphPad Prism version 5.0. A significance 

level of 0.05 was applied to ascertain statistical 

significance. 
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Results 
Gene expression analysis of fibrinogen 

chains and albumin in Hep-G2 harboring 

ORF9b in comparison with control 

Real-time PCR analysis confirmed the 

expression of the ORF9b in Hep- G2 cells 

 

containing ORF9b. Moreover, the 

transcriptional activity of the fibrinogen α 

chain was notably elevated in Hep-G2 cells 

harboring ORF9b compared to the control 

group (P=0.03) (Fig. 1). 

 
Fig. 1. Gene expression in Hep-G2 harboring ORF9b in comparison with control. Transcriptional activity of the fibrinogen α 

chain was significantly increased in Hep-G2 cells expressing ORF9b compared to the control group (P = 0.03). 

 

Discussion 
The present study showed an upregulation in 

the expression of three fibrinogen genes after 

the introduction of the ORF9b from SARS-

CoV-2 into the Hep-G2 cell line. Fibrinogen, a 

liver-produced glycoprotein known for its anti-

infective properties, can, however, pose risks 

when overexpressed during acute 

inflammatory responses, potentially leading to 

coagulation and thrombosis (20). This 

phenomenon is particularly relevant in 

COVID-19 cases, where elevated fibrinogen 

levels correlate with increased inflammation, 

disease severity, and ICU admissions (21). 

Research by Long et al. indicates that 

abnormal fibrinogen levels are associated with 

heightened mortality risk in COVID-19 

patients, serving as a prognostic indicator for 

critical illness onset (22). Additionally, Sui et  

 
al. observed elevated fibrinogen levels in severe 

COVID-19 cases (21). Furthermore, the study 

by Rezaei-Tavirani et al. highlights the 

significance of fibrinogen chains, specifically 

FGA, FGB, and FGG, in predicting COVID-19 

prognosis and fatality (23). The liver's 

hyperactive response during the acute 

inflammatory phase of COVID-19 leads to the 

secretion of various inflammatory proteins, 

including fibrinogen (24, 25). The fibrinogen 

function in patients with acute COVID-19 and 

clot formation were studied (21, 26). 

Investigating the coagulation processes and 

molecular pathways involved in fibrinogen 

induction offers potential avenues for managing 

and treating COVID-19 patients (23).  

In COVID-19 patients, SARS-CoV-2 

exerts a direct impact on liver function, often 
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resulting in hepatic degeneration, as evidenced 

by common abnormalities in liver enzymes 

(27). Several studies have established a strong 

correlation between circulating mitochondrial 

DNA (mtDNA) levels and the severity of 

COVID-19 (28, 29). Additionally, research 

indicates that circulating mtDNA can serve as 

a predictive marker for disease severity and 

the ensuing pro-inflammatory response (12). 

NSP4 and ORF9b, both encoded by SARS-

CoV-2, have been identified as proteins that 

facilitate the release of mtDNA (12). Faizan 

et al. provided the initial molecular evidence 

demonstrating that the release of mtDNA 

from the inner membrane is a coordinated 

process regulated by Induced myeloid 

leukemia cell differentiation protein (MCL1) 

(12). MCL1 overexpression at a genetic level 

serves to safeguard the inner membrane from 

damage and the subsequent release of mtDNA 

(12). Verification of MCL1's role in 

orchestrating the formation of inner 

membrane vesicles was observed in ORF9b-

expressing cells (12). ORF9b's influence in 

promoting vesicle formation within the inner 

membrane was evident in transfected airway 

epithelial cells, where direct interaction with 

MCL1 was noted, thereby restraining MCL1 

accumulation (12). The extracellular release 

of mtDNA has the potential to impact 

neighboring cells by activating the TLR9 

signaling pathway, subsequently initiating 

downstream signaling cascades that trigger 

the production of chemokines and pro-

inflammatory cytokines (PICs) (29-31). 

Stress and circulating cell-free mitochondrial 

DNA (Cf-mtDNA) derived from the plasma 

of COVID-19 patients was found to robustly 

induce a pro-inflammatory response in 

primary airway epithelial cells, ultimately 

leading to cellular demise (12). Previous 

investigations have demonstrated a 

significant positive correlation between the 

release of cf-mtDNA and pro-inflammatory 

mediators in clinical blood samples from 

COVID-19 patients, mirroring findings 

observed in our study (28, 29). 

In our study, another gene demonstrating a 

significant alteration was albumin, with its 

transcript exhibiting downregulation in the 

Hep-G2 cell line following ORF9b 

expression. Previous investigations have 

substantiated that individuals afflicted with 

COVID-19 undergo an exacerbated oxidative 

stress response, resulting in elevated levels of 

reactive oxygen species (ROS), with albumin 

playing a pivotal role in fortifying the body's 

antioxidant defense mechanism (32-34). 

Throughout the SARS-CoV-2 pandemic, 

consistent reports have linked the clinical 

presentation, symptoms, and outcomes of 

COVID-19 with hypoalbuminemia (35, 36). 

Notably, recent research has highlighted 

hypoalbuminemia as an independent risk 

factor for mortality, with hypoalbuminemic 

patients exhibiting a 6.394 times higher risk 

of mortality compared to those with normal 

albumin levels (35). Moreover, concurrent 

hypoalbuminemia correlates with prolonged 

hospitalization and increased mortality rates 

(37). Furthermore, hypoalbuminemia serves 

as a robust early predictor of in-hospital 

mortality in COVID-19 cases, irrespective of 

age, inflammatory markers, or comorbidities 

(18). The utility of low albumin levels as a 

reliable prognostic biomarker for identifying 

severe illness early on, thereby aiding 

clinicians in optimal patient management 

decisions, has been emphasized (36, 38, 39). 

Additionally, independent of the Charlson-

Age Comorbidity Index, hypoalbuminemia 

exhibits a strong association with adverse 

outcomes in COVID-19 patients. Aziz et al. 

conducted a meta-analysis underscoring the 

link between severe COVID-19 cases and 

hypoalbuminemia (38). Moreover, higher 

albumin levels upon admission were linked to 

significantly fewer adverse outcomes, 

including venous thromboembolism (VTE), 

acute respiratory distress syndrome (ARDS), 

ICU admission, and readmissions within 90 

days post-screening (39). Anber et al. 

reported markedly lower average serum 

albumin concentrations in both severe and 

non-severe COVID-19 patients compared to 

healthy controls. They proposed that serum 

alanine transaminase (ALT) activity serves as 

the most effective biomarker for 
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distinguishing between non-severe and severe 

patients, while albumin concentration 

remains an exceptional discriminator between 

patients and controls (40). 

In summary, the findings suggest that the 

ORF9b strain of SARS-CoV-2 from Wuhan 

could potentially impact the course of SARS-

CoV-2 infection by upregulating the α, β, and 

γ chains of fibrinogen genes. Additionally, 

SARS-CoV-2 ORF9b may play a role in the 

pathogenesis of SARS-CoV-2 infection by 

inhibiting the expression of the albumin gene. 

Further investigations are warranted to 

validate these findings across different strains 

of SARS-CoV-2 and to explore the potential 

of ORF9b protein as a target for medication 

development. 
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