Volume 13, Issue 2 (Vol.13 No.2 Jul 2024)                   rbmb.net 2024, 13(2): 184-195 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Badiee M S, Vadizadeh A, Salehcheh M, Moosavi M, Shirani M, Fakhredini F et al . Quercetin and Catechin Protects Leptin-Deficient Lepob/Ob Mice Against Alloxan-Induced Diabetes and Hepatotoxicity via Suppression of Oxidative Stress and Inflammation. rbmb.net 2024; 13 (2) :184-195
URL: http://rbmb.net/article-1-1401-en.html
Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Abstract:   (604 Views)
Background: The study focuses on evaluating the combined effects of quercetin (QCT) and catechin (CAT), both plant-based antioxidants, on alloxan-induced liver toxicity and diabetes in leptin-deficient (Lepob/ob) mice. Diabetes is a metabolic disorder characterized by high blood glucose levels due to inadequate insulin secretion or insulin resistance.

Methods: Thirty mice were divided into five groups of 6, including: normal control, diabetic control, diabetic mice treated with 150 mg/kg CAT, diabetic mice treated with 150 mg/kg QCT, and diabetic mice treated with 150 mg/kg CAT, and 150 mg/kg QCT for seven days. Mice were anesthetized after overnight fasting on the 8th day, and the blood sample was collected and the levels of antioxidants and pro-inflammatory factors in serum, and the expression of ADP-ribose polymerase (PARP) protein were measured, and histological studies were performed.

Results: The results showed that diabetic mice receiving QCT and CAT showed lower liver enzymes, fasting blood sugar (FBS), blood urea nitrogen (BUN), creatinine (Cr), cholesterol, triglyceride, low-density lipoprotein (LDL), TNF-α, and thiobarbituric acid reactive substances (TBARS) levels and increased high-density lipoprotein (HDL), total thiol, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels in the liver compared to the ALLO group alone (P<0.001). The level of PARP protein significantly declined in the ALLO group compared to the control group.

Conclusion: The findings of this study demonstrated that QCT, and CAT are reasonably effective in preventing hepatotoxicity and diabetes in mice.
 
Full-Text [PDF 502 kb]   (193 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/05/28 | Accepted: 2024/10/5 | Published: 2025/01/4

References
1. Singh LW. Traditional medicinal plants of Manipur as anti-diabetics. J Med Plants Res. 2011;5(5):677-87.
2. Chandran R, Parimelazhagan T, Shanmugam S, Thankarajan S. Antidiabetic activity of Syzygium calophyllifolium in Streptozotocin-Nicotinamide induced Type-2 diabetic rats. Biomed Pharmacother. 2016; 82: 547-54. [DOI:10.1016/j.biopha.2016.05.036] [PMID]
3. Mohammed A, Tanko Y, Okasha M, Magaji R, Yaro A. Effects of aqueous leaves extract of Ocimum gratissimum on blood glucose levels of streptozocin induced diabetic wistar rats. Afr J Biotechnol. 2007;6(18). [DOI:10.5897/AJB2007.000-2323]
4. Scaroni C, Zilio M, Foti M, Boscaro M. Glucose metabolism abnormalities in Cushing syndrome: from molecular basis to clinical management. Endocr Rev. 2017;38(3):189-219. [DOI:10.1210/er.2016-1105] [PMID]
5. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719-24. [DOI:10.1016/S0140-6736(05)67698-2] [PMID]
6. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72. [DOI:10.3390/antiox8030072] [PMID] []
7. Ullah F, Afridi AK, Rahim F, Ashfaq M, Khan S, Shabbier G, et al. Knowledge of diabetic complications in patients with diabetes mellitus. J Ayub Med Coll Abbottabad.2015;27(2):360-3.
8. Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, et al. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother. 2023;167(115502):19. [DOI:10.1016/j.biopha.2023.115502] [PMID]
9. Collins QF, Liu H-Y, Pi J, Liu Z, Quon MJ, Cao W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem. 2007;282(41):30143-9. [DOI:10.1074/jbc.M702390200] [PMID] []
10. Park JB. Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem Biophys Res Commun. 1999;260(2):568-74. [DOI:10.1006/bbrc.1999.0890] [PMID]
11. Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr. 2007;26(4):373S-88S. [DOI:10.1080/07315724.2007.10719626] [PMID]
12. Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, et al. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr.2006;136(10):2512-8. [DOI:10.1093/jn/136.10.2512] [PMID]
13. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J Nutr. 2004;134(12):3431S-40S. [DOI:10.1093/jn/134.12.3431S] [PMID]
14. Fukino Y, Ikeda A, Maruyama K, Aoki N, Okubo T, Iso H. Randomized controlled trial for an effect of green tea-extract powder supplementation on glucose abnormalities. Eur J Clin Nutr. 2008;62(8):953-60. [DOI:10.1038/sj.ejcn.1602806] [PMID]
15. Loke WM, Proudfoot JM, Mckinley AJ, Needs PW, Kroon PA, Hodgson JM, et al. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem. 2008;56(10):3609-15. [DOI:10.1021/jf8003042] [PMID]
16. Boots AW, Drent M, de Boer VC, Bast A, Haenen GR. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 2011;30(4):506-12. [DOI:10.1016/j.clnu.2011.01.010] [PMID]
17. Della Loggia R, Ragazzi E, Tubaro A, Fassina G, Vertua R. Anti-inflammatory activity of benzopyrones that are inhibitors of cyclo-and lipo-oxygenase. Pharmacol Res Commun. 1988; 20:91-4. [DOI:10.1016/S0031-6989(88)80849-X] [PMID]
18. Lim SS, Jung SH, Ji J, Shin KH, Keum SR. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin‐induced diabetic rat tissues. J Pharm Pharmacol. 2001;53(5):653-68. [DOI:10.1211/0022357011775983] [PMID]
19. Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol Rep. 2009;61(1):67-75. [DOI:10.1016/S1734-1140(09)70008-8] [PMID]
20. Bischoff SC. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008;11(6):733-40. [DOI:10.1097/MCO.0b013e32831394b8] [PMID]
21. Coqueiro A, Regasini LO, Skrzek SCG, Queiroz MMF, Silva DHS, da Silva Bolzani V. Free radical scavenging activity of Kielmeyera variabilis (Clusiaceae). Molecules. 2013;18(2):2376-85. [DOI:10.3390/molecules18022376] [PMID] []
22. Giorgi A, Tempera I, Napoletani G, Drovandi D, Potestà C, Martire S, et al. Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies. Acta Diabetol. 2017;54(9):833-42. [DOI:10.1007/s00592-017-1013-y] [PMID]
23. Szabó C, Biser A, Benko R, Böttinger E, Suszták K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes. 2006;55(11):3004-12. [DOI:10.2337/db06-0147] [PMID]
24. Huang Y, Hou T. Hypoglycaemic effect of Artemisia sphaerocephala Krasch seed polysaccharide in alloxan-induced diabetic rats. Swiss Med Wkly. 2006;136(3334):529-32. [DOI:10.4414/smw.2006.11348] [PMID]
25. Lee BR, Park PS. Effect of combined treatment with catechin and quercetin on hepatic glucose metabolism in diabetic rats. 2022. [DOI:10.3746/jkfn.2022.51.1.12]
26. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014;109(1):8-14. [DOI:10.1016/j.lfs.2014.06.005] [PMID]
27. He F. Bradford protein assay. Bio-protocol. 2011: e45-e. [DOI:10.21769/BioProtoc.45]
28. Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37-43. [DOI:10.1016/0009-8981(78)90081-5] [PMID]
29. Luna, Lee G., et al. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed, Blakiston Division, McGraw-Hill, 1968.
30. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011; 3:1-8. [DOI:10.1186/1758-5996-3-17] [PMID] []
31. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A. 2010;107(21):9765-70. [DOI:10.1073/pnas.0908771107] [PMID] []
32. Mahmoudi A, Ghatreh Samani K, Amini SA, Heidarian E. Effects of Pioglitazone On the Lipid Profile, Serum Antioxidant Capacity, and UCP1 Gene Expression in Mouse Brown Adipose Tissue. Rep Biochem Mol Biol. 2019;8(1):15-20.
33. Nadimi H, Djazayery A, Javanbakht MH, Dehpour A, Ghaedi E, Derakhshanian H, et al. The Effect of Vitamin D Supplementation on Serum and Muscle Irisin Levels, and FNDC5 Expression in Diabetic Rats. Rep Biochem Mol Biol. 2019;8(3):236-43.
34. Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 2019;33(12):3140-52. [DOI:10.1002/ptr.6486] [PMID]
35. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother. 2022; 146:112560. [DOI:10.1016/j.biopha.2021.112560] [PMID]
36. Gomes IB, Porto ML, Santos MCL, Campagnaro BP, Pereira TM, Meyrelles SS, et al. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis. 2014; 13:1-10. [DOI:10.1186/1476-511X-13-184] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb