Volume 9, Issue 3 (Vol.9 No.3 Oct 2020)                   rbmb.net 2020, 9(3): 297-308 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vakilian H, Andres Rojas E, Habibi Rezaei L, Behmanesh M. Fabrication and Optimization of Linear PEI-Modified Crystal Nanocellulose as an Efficient Non-Viral Vector for In-Vitro Gene Delivery. rbmb.net 2020; 9 (3) :297-308
URL: http://rbmb.net/article-1-398-en.html
Nano biotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran & Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Abstract:   (3315 Views)
Background: One of the major challenges in gene therapy is producing gene carriers that possess high transfection efficiency and low cytotoxicity (1). To achieve this purpose, crystal nanocellulose (CNC) -based nanoparticles grafted with polyethylenimine (PEI) have been developed as an alternative to traditional viral vectors to eliminate potential toxicity and immunogenicity.

Methods: In this study, CNC-PEI10kDa (CNCP) nanoparticles were synthetized and their transfection efficiency was evaluated and compared with linear cationic PEI10kDa (PEI) polymer in HEK293T (HEK) cells. Synthetized nanoparticles were characterized with AFM, FTIR, DLS, and gel retardation assays. In-vitro gene delivery efficiency by nano-complexes and their effects on cell viability were determined with fluorescent microscopy and flow cytometry.

Results: Prepared CNC was oxidized with sodium periodate and its surface cationized with linear PEI. The new CNCP nano-complex showed different transfection efficiencies at different nanoparticle/plasmid ratios, which were greater than those of PEI polymer. CNPC and Lipofectamine were similar in their transfection efficiencies and effect on cell viability after transfection.

Conclusions: CNCP nanoparticles are appropriate candidates for gene delivery. This result highlights CNC as an attractive biomaterial and demonstrates how its different cationized forms may be applied in designing gene delivery systems.
Full-Text [PDF 452 kb]   (1487 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2019/09/2 | Accepted: 2019/09/2 | Published: 2020/12/1

References
1. Lin X, Zhao N, Yan P, Hu H, Xu F-J. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta biomaterialia. 2015;11:381-392. [DOI:10.1016/j.actbio.2014.09.004] [PMID]
2. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature Reviews Genetics. 2014;15(8):541-555. [DOI:10.1038/nrg3763] [PMID]
3. Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol pathol. 2008;36(1):97-103. [DOI:10.1177/0192623307309925] [PMID]
4. Breen A, Strappe P, Kumar A, O'Brien T, Pandit A. Optimization of a fibrin scaffold for sustained release of an adenoviral gene vector. J Biomed Mater Res A. 2006;78(4):702-8. [DOI:10.1002/jbm.a.30735] [PMID]
5. Lilley CE, Branston RH, Coffin RS. Herpes simplex virus vectors for the nervous system. Curr Gene Ther. 2001;1(4):339-58. [DOI:10.2174/1566523013348346] [PMID]
6. Nimesh S, Kumar R, Chandra R. Novel polyallylamine-dextran sulfate-DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int J Pharm. 2006;320(1-2):143-9. [DOI:10.1016/j.ijpharm.2006.03.050] [PMID]
7. Ahn HH, Lee MS, Cho MH, Shin YN, Lee JH, Kim KS, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313-314:116-120. [DOI:10.1016/j.colsurfa.2007.04.156]
8. Klemm DB, Heublein B, Fink H-P, A Bohn.Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition. 2005;44(22):3358-3393. [DOI:10.1002/anie.200460587] [PMID]
9. Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758-778. [DOI:10.3144/expresspolymlett.2008.90]
10. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43(5):1519-42. [DOI:10.1039/C3CS60204D] [PMID]
11. Bisht HS, Manickam DS, You Y, Oupicky D. Temperature-controlled properties of DNA complexes with poly (ethylenimine)-g raft-poly (N-isopropylacrylamide). Biomacromolecules. 2006;7(4):1169-78. [DOI:10.1021/bm0509927] [PMID]
12. Jiang X, Lok MC, Hennink WE. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem. 2007;18(6):2077-84. [DOI:10.1021/bc0701186] [PMID]
13. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly (ethylene imine) and its derivatives. J Gene Med. 2005;7(8):992-1009. [DOI:10.1002/jgm.773] [PMID]
14. Bonnet M-E, Erbacher P, Bolcato-Bellemin A-L. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res. 2008;25(12):2972-82. [DOI:10.1007/s11095-008-9693-1] [PMID]
15. Ntoutoume GMN, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett. 2016;26(3):941-945. [DOI:10.1016/j.bmcl.2015.12.060] [PMID]
16. Ntoutoume GMN, Grassot V, Brégier F, Chabanais J, Petit J-M, Granet R, et al. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym. 2017;164:258-267. [DOI:10.1016/j.carbpol.2017.02.004] [PMID]
17. Fredon E, Granet R, Zerrouki R, Krausz P, Saulnier L, Thibault J, et al. Hydrophobic films from maize bran hemicelluloses. Carbohydrate polymers. 2002;49(1):1-12. [DOI:10.1016/S0144-8617(01)00312-5]
18. Buchman YK, Lellouche E, Zigdon S, Bechor M, Michaeli S, Lellouche J-P. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications. Bioconjug Chem. 2013;24(12):2076-87. [DOI:10.1021/bc4004316] [PMID]
19. Jahan MS, Saeed A, He Z, Ni Y. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose. 2011;18(2):451-459. [DOI:10.1007/s10570-010-9481-z]
20. Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15(5):1560-7. [DOI:10.1021/bm401593n] [PMID]
21. Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016;7(3):035004. [DOI:10.1088/2043-6262/7/3/035004]
22. Sharma H, Carmichael E, Muhamad M, McCall D, Andrews F, Lyons G, et al. Biorefining of perennial ryegrass for the production of nanofibrillated cellulose. RSC Advances. 2012;2(16):6424-6437. [DOI:10.1039/c2ra20716h]
23. Hu H, Yuan W, Liu F-S, Cheng G, Xu F-J, Ma J. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS applied materials & interfaces. 2015;7(16):8942-51. [DOI:10.1021/acsami.5b02432] [PMID]
24. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews. 2010;110(6):3479-3500. [DOI:10.1021/cr900339w] [PMID]
25. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal. 2014;59:302-325. [DOI:10.1016/j.eurpolymj.2014.07.025]
26. Grate JW, Mo K-F, Shin Y, Vasdekis A, Warner MG, Kelly RT, et al. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug chem. 2015;26(3):593-601. [DOI:10.1021/acs.bioconjchem.5b00048] [PMID]
27. Socrates G. Hydration study of acetaldehyde and propionaldehyde. The Journal of Organic Chemistry. 1969;34(10):2958-2961. [DOI:10.1021/jo01262a033]
28. Sirviö JA, Liimatainen H, Niinimäki J, Hormi O. Sustainable packaging materials based on wood cellulose. RSC advances. 2013;3(37):16590-6. [DOI:10.1039/c3ra43264e]
29. Kim T-H, Seo HW, Han J, Ko KS, Choi JS. Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity. Macromolecular Research. 2014;22(7):757-764. [DOI:10.1007/s13233-014-2108-8]
30. Zhao J, Li Q, Zhang X, Xiao M, Zhang W, Lu C. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites. Carbohydr Polym. 2017;157:1419-1425. [DOI:10.1016/j.carbpol.2016.11.025] [PMID]
31. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules. 2008;41(23):9345-9351. [DOI:10.1021/ma801110g]
32. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613-8. [DOI:10.1073/pnas.0801763105] [PMID] [PMCID]
33. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS applied materials & interfaces. 2010;2(10):2924-2932. [DOI:10.1021/am1006222] [PMID]
34. Kim U-J, Kuga S, Wada M, Okano T, Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 2000;1(3):488-492. [DOI:10.1021/bm0000337] [PMID]
35. Julien S, Chornet E, Overend R. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis. 1993;27(1):25-43. [DOI:10.1016/0165-2370(93)80020-Z]
36. Zhao Q-Q, Chen J-L, Lv T-F, He C-X, Tang G-P, Liang W-Q, et al. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol Pharm Bull. 2009;32(4):706-10. [DOI:10.1248/bpb.32.706] [PMID]
37. Zhang X-Q, Wang X-L, Zhang P-C, Liu Z-L, Zhuo R-X, Mao H-Q, et al. Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. Journal of controlled release. 2005;102(3):749-763. [DOI:10.1016/j.jconrel.2004.10.024] [PMID]
38. Ge X, Feng J, Chen S, Zhang C, Ouyang Y, Liu Z, et al. Biscarbamate cross-linked low molecular weight Polyethylenimine polycation as an efficient intra-cellular delivery cargo for cancer therapy. Journal of nanobiotechnology. 2014;12(1):13. [DOI:10.1186/1477-3155-12-13] [PMID] [PMCID]
39. Sarkar K, Debnath M, Kundu P. Preparation of low toxic fluorescent chitosan-graft-polyethyleneimine copolymer for gene carrier. Carbohydrate polymers. 2013;92(2):2048-2057. [DOI:10.1016/j.carbpol.2012.11.067] [PMID]
40. Ping Y, Liu CD, Tang GP, Li JS, Li J, Yang WT, et al. Functionalization of chitosan via atom transfer radical polymerization for gene delivery. Advanced Functional Materials. 2010;20(18):3106-3116. [DOI:10.1002/adfm.201000177]
41. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121-31. [DOI:10.1016/S0142-9612(02)00445-3]
42. Cai J, Yue Y, Rui D, Zhang Y, Liu S, Wu C. Effect of chain length on cytotoxicity and endocytosis of cationic polymers. Macromolecules. 2011;44(7):2050-2057. [DOI:10.1021/ma102498g]
43. Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu Z-R. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J Control Release. 2013;171(3):296-307. [DOI:10.1016/j.jconrel.2013.06.019] [PMID] [PMCID]
44. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11(6):990-5. [DOI:10.1016/j.ymthe.2005.02.010] [PMID]
45. Zintchenko A, Philipp A, Dehshahri A, Wagner E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 2008;19(7):1448-55. [DOI:10.1021/bc800065f] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb