Volume 9, Issue 1 (Vol.9 No.1 Apr 2020)                   rbmb.net 2020, 9(1): 14-25 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etesami B, Ghaseminezhad S, Nowrouzi A, Rashidipour M, Yazdanparast R. Investigation of 3T3-L1 Cell Differentiation to Adipocyte, Affected by Aqueous Seed Extract of Phoenix Dactylifera L. rbmb.net 2020; 9 (1) :14-25
URL: http://rbmb.net/article-1-435-en.html
Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (4519 Views)
Background: Obesity, often associated with insulin resistance and type 2 diabetes, is a metabolic disease that can result in dyslipidemia and hyperglycemia. Many reports describe the hypoglycemic and hypolipidemic properties of the Phoenix dactylifera L. seed extract in STZ-induced diabetic rat models, however, its anti-diabetic effects in other diabetic models are less characterized in the literature. This study set out to determine the possible effects of the Phoenix dactylifera L. seed extract on adipogenesis and glucose homeostasis. 

Methods: 3T3-L1 cells were cultured in adipocyte differentiation media with or without varying doses of Phoenix dactylifera L. extract (0.312-1 mg/ml). Assays were performed on days 5, 8, and 12 after induced differentiation. 

Results: Our results demonstrate that the triglyceride content in treated groups was significantly lower compared to controls. Further, treating 3T3-L1 cells with Phoenix dactylifera L. seed extract reduced adipogenesis through the downregulation of PPAR-γ and CEBP-α, and adipocyte-specific genes involved in fatty acid metabolism including ap2, ACACA, and FAS. 

Conclusions: Phoenix dactylifera L. seeds have the potential to inhibit adipogenesis and obesity. Overall, this study explored the inhibitory effects of Phoenix dactylifera L. seed extract on adipogenesis in 3T3-L1 cells on the molecular level.
Full-Text [PDF 712 kb]   (2439 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2019/12/21 | Accepted: 2019/12/26 | Published: 2020/05/19

References
1. 1. Moreno-Navarrete JM, Fernández-Real JM. Adipocyte Differentiation. In: Symonds M. (eds.), Adipose Tissue Biology. Springer, New York. 2012;17-38. [DOI:10.1007/978-1-4614-0965-6_2]
2. Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab. 1976; 5(2): 299-311. [DOI:10.1016/S0300-595X(76)80023-0]
3. Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab. 2009; 20(3): 107-14. [DOI:10.1016/j.tem.2008.11.005]
4. Tang QQ, Grønborg M, Huang H, Kim JW, Otto TC, Pandey A, and Lane MD. Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK and glycogen synthase kinase 3β is required for adipogenesis. Proc Natl Acad Sci USA. 2005;102(28): 9766-9771. [DOI:10.1073/pnas.0503891102]
5. Savage DB, Petersen KF, Shulman, GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension. 2005;45(5): 828-33. [DOI:10.1161/01.HYP.0000163475.04421.e4]
6. Grover LW, Jacqueline MS. Targeting Acetyl-CoA Carboxylase for Anti-obesity Therapy. Current Medicinal Chemistry- Immunology, Endocrine & Metabolic Agents. 2003;3(3): 229-234. [DOI:10.2174/1568013033483401]
7. Pagliuca FW, Melton DA. How to make a functional β-cell. Development. 2013;140(12): 2472-83. [DOI:10.1242/dev.093187]
8. Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105-110. [DOI:10.1002/jcb.26174]
9. Tsuchiya A, Kanno T, Nishizaki T. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway. J Endocrinol. 2013;220(1):49-59. [DOI:10.1530/JOE-13-0172]
10. Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH, Yeung DC, Janus ED, Sham PC, Lam KS. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation. 2007;115(12):1537-43. [DOI:10.1161/CIRCULATIONAHA.106.647503]
11. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6,4. [DOI:10.3389/fphys.2015.00004]
12. Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V, Buzadzic B, Korac A, Korac B. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol. 2015;593(15): 3267-80. [DOI:10.1113/JP270805]
13. Miller CJ, Dunn, EV, Hashim IB. The glycaemic index of dates and date/yoghurt mixed meals. Are dates 'the candy that grows on trees'? Eur J Clin Nutr. 2003;57(3):427-30. [DOI:10.1038/sj.ejcn.1601565]
14. Al-Farsi MA, Lee CY. Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr. 2008;48(10):877-87. [DOI:10.1080/10408390701724264]
15. Elgindi M, Singab AN, El-Taher MM, Kassem M. A comprehensive review of Phoenix (Arecaceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(3):966.
16. Morton JF, Dowling CF. Fruits of warm climates. Miami, FL; Winterville, N.C: J.F. Morton; Distributed by Creative Resources Systems; 1987.
17. Al-Farsi MA and Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008;108(3):977-85. [DOI:10.1016/j.foodchem.2007.12.009]
18. Adhami VM, Syed DN, Khan N, Mukhtar H. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol. 2012;84(10):1277-81. [DOI:10.1016/j.bcp.2012.07.012]
19. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2009;2(5):270-78. [DOI:10.4161/oxim.2.5.9498]
20. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets. 2009;8(3):229-35. [DOI:10.2174/187152809788681029]
21. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1-18. [DOI:10.1016/j.jnutbio.2013.09.001]
22. Abdelaziz DH, Ali SA, Mostafa MM. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats. Pharm Biol. 2015;53(6):792-9. [DOI:10.3109/13880209.2014.942790]
23. Mohamed NA, Ahme OM, Hozayen WG, Ahmed MA. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-Induced diabetic wistar rats. Biomed Pharmacother. 2018; 97:9-18. [DOI:10.1016/j.biopha.2017.10.117]
24. Mokhtari M, Sharifi A, Sabzevari Fard A. Effect of palm seed alcoholic extract on the blood glucose and lipids concentration in male diabetic rats. Scientific Journal of Kurdistan University of Medical Sciences. 2008;12(4):8-15.
25. El-Mousalamy MDA, Hussein AAM, Mahmoud SA, Abdelaziz A, Shaker G. Aqueous and methanolic extracts of palm date seeds and fruits (Phoenix dactylifera) protects against diabetic nephropathy in type II diabetic rats. Biochemistry and Physiology. 2016;5(2):1-9. [DOI:10.4172/2168-9652.1000205]
26. Abdelaziz DH, Ali SA. The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J Ethnopharmacol. 2014;155(1):736-43. [DOI:10.1016/j.jep.2014.06.026]
27. El-Fouhil AF, Ahmed AM, Darwish HH. Hypoglycemic effect of an extract from date seeds on diabetic rats. Saudi Med J. 2010;31(7):747-51.
28. El Fouhil A, Ahmed A, Atteya M, Mohammad R, Moustafa A, Darwish H. An extract from date seeds stimulates endogenous insulin secretion in streptozotocin-induced type I diabetic rats. Functional Foods in Health and Disease. 2013;3(11):441-46. [DOI:10.31989/ffhd.v3i11.33]
29. El Fouhil AF, Ahmed AM, Darwish HH, Atteya M, Al-Roalle AH. An extract from date seeds having a hypoglycemic effect. Is it safe to use?. Saudi Med J. 2011;32(8):791-6.
30. Hasan M, Mohieldein A. In Vivo Evaluation of Anti Diabetic, Hypolipidemic, Antioxidative Activities of Saudi Date Seed Extract on Streptozotocin Induced Diabetic Rats. J Clin Diagn Res. 2016;10(3):FF06-12. [DOI:10.7860/JCDR/2016/16879.7419]
31. Saryono S. Date Seeds Drinking as Antidiabetic: A Systematic Review. IOP Conference Series: Earth and Environmental Science. 2019;255:12-18. [DOI:10.1088/1755-1315/255/1/012018]
32. Ismail MS, Abuzaid OI, El-Ashmawy IM. Effect of aqueous extract of tops of date palm leaves on blood glucose of diabetic rats. Pak J Pharm Sci. 2017;30(5(Supplementary)):20317-22037.
33. Azahari N, Khattak MMAK, Taher M, Ichwan SJA. Dose Water Extract of Cinnamon (Cinnamomum Zeylanicum) Exhibits Anti-Diabetic Properties in Cultured 3T3-L1 Adipocytes: A Concurrent Assessment of Adipogenesis, Lipolysis and Glucose Uptakes. Journal of Food and Nutrition Research. 2014;2(11):764-769. [DOI:10.12691/jfnr-2-11-1]
34. Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem. 2012;425(1):88-90. [DOI:10.1016/j.ab.2012.03.005]
35. Shu G, Lu NS, Zhu XT, Xu Y, Du MQ, Xie QP, et al. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo. The Journal of Nutritional Biochemistry. 2014;25(12):1296-1308. [DOI:10.1016/j.jnutbio.2014.07.007]
36. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun. 2015;466(2):247-253. [DOI:10.1016/j.bbrc.2015.09.018]
37. Gaamoussi F, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of an aqueous extract of Chamaerops humilis leaves in obese, hyperglycemic and hyperlipidemic Meriones shawi rats. Pak J Pharm Sci. (2010) 23(2): 212-219.
38. Perez S, Perez RM, Perez C, Zavala MA, Vargas R. Coyolosa, a new hypoglycemic from Acrocomia mexicana. Pharmaceutica Acta Helvetiae. 1997;72(2):105-11. [DOI:10.1016/S0031-6865(96)00019-2]
39. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics (Sao Paulo). 2009;64(3):235-44. [DOI:10.1590/S1807-59322009000300015]
40. Laouini Salah E. Antioxidant, anti-inflammatory and diabetes related enzyme inhibition properties of leaves extract from selected varieties of Phoenix dactylifera L. Innovare Journal of Life Sciences. 2013;1(1):14-18.
41. Wang YW, Jones PJ. Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord. 2004;28(8):941-55. [DOI:10.1038/sj.ijo.0802641]
42. Camp HS, Ren D, Leff T. Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med. 2002;8(9):442-47. [DOI:10.1016/S1471-4914(02)02396-1]
43. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847-53. [DOI:10.1038/nature05483]
44. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. 2008;82(19-20):1032-9. [DOI:10.1016/j.lfs.2008.03.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb