Volume 9, Issue 4 (Vol.9 No.4 Jan 2021)                   rbmb.net 2021, 9(4): 426-434 | Back to browse issues page


XML Print


Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (3709 Views)
Background: Evidence indicates that combined approaches based on exercise and nutrition benefit neural development. We aimed to determine the effect of saffron and endurance training on hippocampus neurogenic factors, neurotrophin-3 gene expression in soleus muscle, and short-term memory in Wistar rats.

Methods: The study analyzed four groups of ten rats each: control, exercise, saffron, and saffron plus exercise. The rats in the exercise groups were trained on a rodent motor-driven treadmill. All rats were gavage daily with either saffron extract (40 mg/kg) or water. After eight weeks of intervention all rats were evaluated using the novel object recognition (NOR) test. Blood and tissue samples were collected to measure proteins and neurotrophin-3 gene expression.

Results: Rats that received saffron treatment combined with exercise had significantly greater brain-derived neurotrophic factor (BDNF) and serotonin in hippocampus compared to the control and saffron-only-treated rats (p< 0.05). Neurotrophin-3 mRNA in soleus muscle was higher in the saffron plus exercise group than rats in the other three groups (p< 0.05). Hippocampus 5-hydroxyindolacetic acid and short-term memory were significantly greater in all the intervention groups than in the control group (p< 0.05).

Conclusions: Saffron, combined with endurance exercise, synergistically increased hippocampus BDNF, serotonin, and muscular neurotrophin-3 mRNA in Wistar rats.
Full-Text [PDF 320 kb]   (1638 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2020/06/12 | Accepted: 2020/06/23 | Published: 2021/03/8

References
1. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464-72. [DOI:10.1016/j.tins.2007.06.011] [PMID]
2. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci. 2018;12:52. [DOI:10.3389/fnins.2018.00052] [PMID] [PMCID]
3. Christian KM, Song H, Ming G-l. Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci. 2014;37:243-62. [DOI:10.1146/annurev-neuro-071013-014134] [PMID] [PMCID]
4. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062-9. [DOI:10.1113/expphysiol.2009.048512] [PMID]
5. Hall JM, Gomez-Pinilla F, Savage LM. Nerve Growth Factor Is Responsible for Exercise-Induced Recovery of Septohippocampal Cholinergic Structure and Function. Front Neurosci. 2018;12:773. [DOI:10.3389/fnins.2018.00773] [PMID] [PMCID]
6. Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci. 2013;33(19):8270-5. [DOI:10.1523/JNEUROSCI.5855-12.2013] [PMID] [PMCID]
7. Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: a meta-analysis of randomized trials. Sports Med. 2009;39(6):491-511. [DOI:10.2165/00007256-200939060-00004] [PMID]
8. Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR. Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis?. J Psychiatry Neurosci. 2006;31(2):84-92.
9. Mir S, Cai W, Carlson SW, Saatman KE, Andres DA. IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Scientific reports. 2017;7(1):3283. [DOI:10.1038/s41598-017-03641-9] [PMID] [PMCID]
10. Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand J Med Sci Sports. 2014;24(1):1-10. [DOI:10.1111/sms.12069] [PMID]
11. Fidalgo S, Ivanov DK, Wood SH. Serotonin: from top to bottom. Biogerontology. 2013;14(1):21-45. [DOI:10.1007/s10522-012-9406-3] [PMID]
12. Meeusen R. Exercise, nutrition and the brain. Sports Med. 2014;44 Suppl 1(Suppl 1):S47-56. [DOI:10.1007/s40279-014-0150-5] [PMID] [PMCID]
13. Vauzour D. Dietary polyphenols as Hmodulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012;2012:914273. [DOI:10.1155/2012/914273] [PMID] [PMCID]
14. Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta. 2014;1845(1):20-30. [DOI:10.1016/j.bbcan.2013.11.001] [PMID]
15. Varasteh A-R, Sankian M, Midoro-Horiuti T, Moghadam M, Shakeri MT, Brooks EG, et al. Molecular cloning and expression of Cro s 1: an occupational allergen from saffron pollen (Crocus sativus). Reports of biochemistry & molecular biology. 2012;1(1):1-8.
16. Hosseinzadeh H, Nassiri‐Asl M. Avicenna's (Ibn Sina) the Canon of Medicine and saffron (Crocus sativus): a review. Phytotherapy Res. 2013;27(4):475-83. [DOI:10.1002/ptr.4784] [PMID]
17. Marx W, Lane M, Rocks T, Ruusunen A, Loughman A, Lopresti A, et al. Effect of saffron supplementation on symptoms of depression and anxiety: a systematic review and meta-analysis. Nutr Rev. 2019. [DOI:10.1093/nutrit/nuz023] [PMID]
18. Ghasemi T, Abnous K, Vahdati F, Mehri S, Razavi B, Hosseinzadeh H. Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug research (Stuttg). 2015;65(7):337-43. [DOI:10.1055/s-0034-1371876] [PMID]
19. Li H, Shen Z, Lu Y, Lin F, Wu Y, Jiang Z. Muscle NT-3 levels increased by exercise training contribute to the improvement in caudal nerve conduction velocity in diabetic rats. Mol Med Rep. 2012;6(1):69-74.
20. Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F. Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord. Brain Res. 2003;987(1):93-99. [DOI:10.1016/S0006-8993(03)03258-X]
21. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci Rep. 2016;6:25139. [DOI:10.1038/srep25139] [PMID] [PMCID]
22. Health NIo. Guide for the care and use of laboratory animals. National Academies. 1985.
23. Arqué G, Fotaki V, Fernández D, De Lagrán MM, Arbonés ML, Dierssen M. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A). PLoS One. 2008;3(7):e2575. [DOI:10.1371/journal.pone.0002575] [PMID] [PMCID]
24. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93-110. [DOI:10.1007/s10339-011-0430-z] [PMID] [PMCID]
25. Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med. 2014;16(1):161-174. [DOI:10.1007/s12017-013-8270-x] [PMID] [PMCID]
26. Marais L, Stein DJ, Daniels WM. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis. 2009;24(4):587-97. [DOI:10.1007/s11011-009-9157-2] [PMID]
27. Vilela TC, Muller AP, Damiani AP, Macan TP, da Silva S, Canteiro PB, et al. Strength and Aerobic Exercises Improve Spatial Memory in Aging Rats Through Stimulating Distinct Neuroplasticity Mechanisms. Mol Neurobiol. 2017;54(10):7928-7937. [DOI:10.1007/s12035-016-0272-x] [PMID]
28. Hopkins ME, Nitecki R, Bucci DJ. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience. 2011;194:84-94. [DOI:10.1016/j.neuroscience.2011.07.071] [PMID] [PMCID]
29. Wang C, Cai X, Hu W, Li Z, Kong F, Chen X, et al. Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's disease. Int J Mol Med. 2019;43(2):956-966. [DOI:10.3892/ijmm.2018.4032]
30. Tamaddonfard E, Farshid AA, Asri-Rezaee S, Javadi S, Khosravi V, Rahman B, et al. Crocin improved learning and memory impairments in streptozotocin-induced diabetic rats. Iran J Basic Med Sci. 2013;16(1):91-100.
31. Cassilhas RC, Tufik S, de Mello MT. Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci. 2016;73(5):975-83. [DOI:10.1007/s00018-015-2102-0] [PMID]
32. Gaeini AA. KL. Iranian Journal of Endocrinology and Metabolism. 2018;20(4):177-84.
33. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc. 2017;65(4):827-832. [DOI:10.1111/jgs.14722] [PMID]
34. Zuzina AB, Vinarskaya AK, Balaban PM. Increase in serotonin precursor levels reinstates the context memory during reconsolidation. Invertebrate Neuroscience. 2019;19(3):8. [DOI:10.1007/s10158-019-0227-9] [PMID]
35. KARIMI GR, Hosseinzadeh H, KHALEGH PP. Study of antidepressant effect of aqueous and ethanolic extract of Crocus sativus in mice. 2001.
36. Sharma NK, Ryals JM, Gajewski BJ, Wright DE. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Phys Ther. 2010;90(5):714-725. [DOI:10.2522/ptj.20090168] [PMID] [PMCID]
37. Akbari-Fakhrabadi M, Najafi M, Mortazavian S, Rasouli M, Memari AH, Shidfar F. Effect of saffron (Crocus sativus L.) and endurance training on mitochondrial biogenesis, endurance capacity, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. J Food Biochem. 2019;43(8):e12946. [DOI:10.1111/jfbc.12946] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.