Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 396-401 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roshani F, Delavar Kasmaee H, Falahati K, Arabzadeh G, Aohan Forooshan Moghadam A, Sanati M H. Analysis of Micro-RNA-144 Expression Profile in Patients with Multiple Sclerosis in Comparison with Healthy Individuals. rbmb.net. 2021; 10 (3) :396-401
URL: http://rbmb.net/article-1-566-en.html
Medical Genetic Department, National Institute of Genetics Engineering and Biothechnology, Tehran, Iran.
Abstract:   (460 Views)
Background: Etiology of multiple sclerosis is non-clarified. It seems that environmental factors impact epigenetic in this disease. Micro-RNAs (MIR) as epigenetic factors are one of the most important factors in non-genetically neurodegenerative diseases. It has been found MIR-144 plays a main role in the regulation of many processes in the central nervous system. Here, we aimed to investigation of MIR-144 expression alteration in Multiple sclerosis (MS) patients. 

Methods: In this study 32 healthy and 32 MS patient's blood sample were analyzed by quantitative Real-Time PCR method and obtained data analyzed by REST 2009 software. 

Results: Analysis of Real-Time PCR data revealed that miR-144 Increase significantly in MS patients compared to healthy controls. Conclusions: The increase of MIR-144 expression in MS patients is obvious. MIR-144 can be used as a biomarker of MS and help to early diagnosis and treatment of this disease.
Full-Text [PDF 226 kb]   (201 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/09/6 | Accepted: 2020/09/29 | Published: 2021/12/5

References
1. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936. [DOI:10.1101/cshperspect.a028936] [PMID] [PMCID]
2. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lécuyer MA, Gendron S, et al. Role of ninjurin‐1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol. 2011;70(5):751-63. [DOI:10.1002/ana.22519] [PMID]
3. Stys PK, Zamponi GW, Van Minnen J, Geurts JJ. Will the real multiple sclerosis please stand up?. Nat Rev Neurosci. 2012;13(7):507-14. [DOI:10.1038/nrn3275] [PMID]
4. Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, et al. Immunopathology of secondary‐progressive multiple sclerosis. Ann Neurol. 2001;50(5):646-57. [DOI:10.1002/ana.1255] [PMID]
5. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157(1):267-76. [DOI:10.1016/S0002-9440(10)64537-3]
6. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(Pt 12):3165-72. [DOI:10.1093/brain/awl217] [PMID]
7. Albert M, Antel J, Brück W, Stadelmann C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007;17(2):129-38. [DOI:10.1111/j.1750-3639.2006.00043.x] [PMID] [PMCID]
8. Pugliatti M, Sotgiu S, Rosati G. The worldwide prevalence of multiple sclerosis. Clin Neurol Neurosurg. 2002;104(3):182-91. [DOI:10.1016/S0303-8467(02)00036-7]
9. Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurol Sci. 2001;22(2):117-39. [DOI:10.1007/s100720170011] [PMID]
10. Sadovnick A, Armstrong H, Rice G, Bulman D, Hashimoto L, Party D, et al. A population‐based study of multiple sclerosis in twins: update. Ann Neurol. 1993;33(3):281-5. [DOI:10.1002/ana.410330309] [PMID]
11. Martin R. Genetics of multiple sclerosis-how could disease-associated HLA-types contribute to pathogenesis? J Neural Transm Suppl. 1997;49:177-94. [DOI:10.1007/978-3-7091-6844-8_19]
12. Lutton J, Winston R, Rodman T. Multiple sclerosis: etiological mechanisms and future directions. Exp Biol Med (Maywood). 2004;229(1):12-20. [DOI:10.1177/153537020422900102] [PMID]
13. Hayes CE, Acheson ED. A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Medical hypotheses. 2008;71(1):85-90. [DOI:10.1016/j.mehy.2008.01.031] [PMID]
14. Wingerchuk DM, Lesaux J, Rice G, Kremenchutzky M, Ebers G. A pilot study of oral calcitriol (1, 25-dihydroxyvitamin D3) for relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005;76(9):1294-6. [DOI:10.1136/jnnp.2004.056499] [PMID] [PMCID]
15. Christensen T, Petersen T, Thiel S, Brudek T, Ellermann-Eriksen S, Møller-Larsen A. Gene-environment interactions in multiple sclerosis: innate and adaptive immune responses to human endogenous retrovirus and herpesvirus antigens and the lectin complement activation pathway. J Neuroimmunol. 2007;183(1-2):175-88. [DOI:10.1016/j.jneuroim.2006.09.014] [PMID]
16. Warner H, Carp R. Multiple sclerosis etiology-an Epstein-Barr virus hypothesis. Medical hypotheses. 1988;25(2):93-97. [DOI:10.1016/0306-9877(88)90024-2]
17. Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol. 2006;176(12):7768-74. [DOI:10.4049/jimmunol.176.12.7768] [PMID]
18. Gayo A, Mozo L, Suárez A, Tuñon A, Lahoz C, Gutiérrez C. Glucocorticoids increase IL-10 expression in multiple sclerosis patients with acute relapse. J Neuroimmunol. 1998;85(2):122-30. [DOI:10.1016/S0165-5728(97)00262-2]
19. Saito Y, Saito H, Liang G, Friedman JM. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol. 2014;47(2):128-35. [DOI:10.1007/s12016-013-8401-z] [PMID] [PMCID]
20. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y, et al. Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci. 2014;11(8):810-8. [DOI:10.7150/ijms.8647] [PMID] [PMCID]
21. Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin Immunol. 2010;136(1):1-15. [DOI:10.1016/j.clim.2010.02.005] [PMID]
22. Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes development. 2007;21(7):744-749. [DOI:10.1101/gad.1519107] [PMID] [PMCID]
23. Aschrafi A, Kar AN, Natera-Naranjo O, MacGibeny MA, Gioio AE, Kaplan BB. MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci. 2012;69(23):4017-27. [DOI:10.1007/s00018-012-1064-8] [PMID]
24. Keller A, Leidinger P, Steinmeyer F, Stähler C, Franke A, Hemmrich-Stanisak G, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler. 2014;20(3):295-303. [DOI:10.1177/1352458513496343] [PMID]
25. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PloS one. 2011;6(9):e24604. [DOI:10.1371/journal.pone.0024604] [PMID] [PMCID]
26. Liu Y, Wang X, Jiang J, Cao Z, Yang B, Cheng X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol. 2011;48(9-10):1084-90. [DOI:10.1016/j.molimm.2011.02.001] [PMID]
27. Emery B. Transcriptional and post-transcriptional control of CNS myelination. Curr Opin Neurobiol. 2010;20(5):601-7. [DOI:10.1016/j.conb.2010.05.005] [PMID]
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. [DOI:10.1006/meth.2001.1262] [PMID]
29. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008;7(12):1139-51. [DOI:10.1016/S1474-4422(08)70259-X]
30. Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease?. Ann Neurol. 2009;65(3):239-48. [DOI:10.1002/ana.21640] [PMID]
31. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147-54. [DOI:10.1016/S1672-0229(08)60044-3]
32. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates T H-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252-9. [DOI:10.1038/ni.1798] [PMID]
33. Sievers C, Meira M, Hoffmann F, Fontoura P, Kappos L, Lindberg RL. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin Immunol. 2012;144(1):70-9. [DOI:10.1016/j.clim.2012.04.002] [PMID]
34. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;102(10):3627-32. [DOI:10.1073/pnas.0500613102] [PMID] [PMCID]
35. Gracias DT, Stelekati E, Hope JL, Boesteanu AC, Doering TA, Norton J, et al. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat Immunol. 2013;14(6):593-602. [DOI:10.1038/ni.2576] [PMID] [PMCID]
36. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging. 2011;32(12):2316.e17-e27. [DOI:10.1016/j.neurobiolaging.2010.03.014] [PMID]
37. Zhao H, Luo Y. Progress in studies of MicroRNA-144-associated diseases and related mechanism. Journal of Capital Medical University. 2013;1:014.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb