Volume 10, Issue 1 (Vol.10 No.1 Apr 2021)                   rbmb.net 2021, 10(1): 119-125 | Back to browse issues page


XML Print


Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
Abstract:   (3088 Views)
Background: Obesity is a multifactorial metabolic disease resulting from behavioral and genetic factors. Obesity is linked to diabetes mellitus and hypertension, which are considered as major risk factors for chronic kidney disease (CKD); moreover, it has a direct effect on developing CKD and end stage renal disease (ESRD). Here was aimed to examine the association between uncoupling protein 2 (UCP2) gene expression and obesity in CKD patients.

Methods: UCP2 gene expression was analyzed by real time polymerase chain reaction (RT-PCR) in 93 participants divided into three groups. The groups included 31 non-obese CKD patients, 31 obese CKD patients, and 31 healthy, age-matched, unrelated volunteers as a control group.

Results: UCP2 gene expression was significantly relevant when comparing the non-obese CKD and obese CKD groups to the control group (p< 0.001). No significant association was found when the groups were compared by gender; Chi-square (X2) was 2.38 and p= 0.304. A significant negative correlation was found between UCP2 gene expression and BMI in CKD (p< 0.05).

Conclusions: These results indicate that UCP2 gene expression plays a significant role as a risk factor for obesity in CKD patients.
Full-Text [PDF 273 kb]   (1321 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/01/13 | Accepted: 2021/02/8 | Published: 2021/05/9

References
1. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006:116:288-296. [DOI:10.1172/JCI27699] [PMID] [PMCID]
2. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388)10053):1603-1658.
3. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258-70. [DOI:10.1038/ki.2011.368] [PMID]
4. Obesity and overweight. World Health Organization. 2015.
5. Glasgow RE, Terborg JR, Hollis JF, Severson HH, Boles SM. Take heart: results from the initial phase of a work-site wellness program. Am J Public Health. 1995;85(2):209-216. [DOI:10.2105/AJPH.85.2.209] [PMID] [PMCID]
6. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One. 2013;8(7):e65174. [DOI:10.1371/journal.pone.0065174] [PMID] [PMCID]
7. Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty D. Stamatakis E, Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk? evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes Rev. 2011;12(9):680-687. [DOI:10.1111/j.1467-789X.2011.00879.x] [PMID] [PMCID]
8. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer-viewpoint of the IARC working group. The New England Journal Medicine. 2016;375(8):794-798. [DOI:10.1056/NEJMsr1606602] [PMID] [PMCID]
9. Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March L. The impact of obesity on the musculoskeletal system. international journal of obesity. 2008;32(2):211-222. [DOI:10.1038/sj.ijo.0803715] [PMID]
10. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obesity Reviews. 2011;12(5):e426-e437. [DOI:10.1111/j.1467-789X.2010.00825.x] [PMID]
11. Mathew AV, Okada S, and Sharma K. Obesity related kidney disease. Current Diabetes Reviews. 2011;7(1):41- 49. [DOI:10.2174/157339911794273928] [PMID]
12. Othman M, Kawar B, El Nahas AM. Influence of obesity on progression of non‐diabetic chronic kidney disease: A retrospective cohort study. Nephron Clinical Practice. 2009;113:c16-c23. [DOI:10.1159/000228071] [PMID]
13. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end‐stage renal disease. Ann Intern Med. 2006;144(1):21-8. [DOI:10.7326/0003-4819-144-1-200601030-00006] [PMID]
14. Dutra MRH, Feliciano RDS, Jacinto KR, Gouveia TLF, Brigidio E, Serra AJ. Protective role of UCP2 in oxidative stress and apoptosis during the silent phase of an experimental model of epilepsy induced by pilocarpine. Oxidative Medicine and Cellular Longevity. 2018;2018:6736721. [DOI:10.1155/2018/6736721] [PMID] [PMCID]
15. Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes. 1997;46(5):900-906. https://doi.org/10.2337/diabetes.46.5.900 [DOI:10.2337/diab.46.5.900] [PMID]
16. Rubattu S, Cotugno M, Bianchi F, Sironi L, Gelosa P, Stanzione R, et al. A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines. J Hypertens. 2017;35(9):1857-1871. [DOI:10.1097/HJH.0000000000001374] [PMID]
17. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, BS Manning, B Miroux, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000,26(4):435-9. [DOI:10.1038/82565] [PMID]
18. Mattiasson G, and Sullivan PG, (2006). The emerging functions of UCP2 in health, disease, and therapeutics. Antioxid Redox Signal. 2006;8(1-2)1-38. [DOI:10.1089/ars.2006.8.1] [PMID]
19. Surniyantoro HNE, Sadewa AH, Hastuti P. Uncoupling protein 2 (UCP2) as genetic risk factor for obesity in Indonesia is different in gender stratification. Kobe J Med Sci. 2018;64(2):E64-E72.
20. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766-81. [DOI:10.1016/S0140-6736(14)60460-8]
21. Ladabaum U, Mannalithara A, Myer PA, Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am J Med. 2014;127(8):717-727.e712. [DOI:10.1016/j.amjmed.2014.02.026] [PMID] [PMCID]
22. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629-646. [DOI:10.1038/nrneph.2017.107] [PMID] [PMCID]
23. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, et al. The biology of mitochondrial uncoupling proteins. Diabetes. 2004;53(suppl 1):S130-5. [DOI:10.2337/diabetes.53.2007.S130] [PMID]
24. Kovesdy CP, Furth S, Zoccali C. Obesity and kidney disease: hidden consequences of the epidemic. Iranian Journal of Kidney Diseases. 2017;11:99-108. [DOI:10.1177/2054358117698669] [PMID]
25. Ikizler TA. Resolved: being fat is good for dialysis patients: the Godzilla effect: pro. J Am Soc Nephrol. 2008;19(6):1059-62. [DOI:10.1681/ASN.2007090983] [PMID]
26. Stenvinkel P, Lindholm B. Resolved: being fat is good for dialysis patients: the Godzilla effect: con. J Am Soc Nephrol2008. 2008;19(6):1062-4. [DOI:10.1681/ASN.2007090983] [PMID]
27. Tomaszewski M, Charchar FJ, Maric C, J McClure, L Crawford, W Grzeszczak, et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 2007;71(8):816-21. [DOI:10.1038/sj.ki.5002160] [PMID]
28. Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res. 1997;38(10):2125-33. [DOI:10.1016/S0022-2275(20)37142-X]
29. Sujata RM, Lele RD, Saranath D, Seth A, Parikh V. Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians. Adipocyte. 2012;1(2):101-107. [DOI:10.4161/adip.19671] [PMID] [PMCID]
30. Nordfors L, Hoffstedt J, Nyberg B, Thörne A, Arner P, Schalling M, et al. Reduced gene expression of UCP2 but not UCP3 in skeletal muscle of human obese subjects. Diabetologia. 1998;41:935-939.‏ [DOI:10.1007/s001250051010] [PMID]
31. Margaryan S, Witkowicz A, Partyka A, Yepiskoposyan L. The mRNA expression levels of uncoupling proteins 1 and 2 in mononuclear cells from patients with metabolic disorders: obesity and type 2 diabetes mellitus. Postȩpy Higieny i Medycyny Doświadczalnej. 2017;71:895-900. [DOI:10.5604/01.3001.0010.5386] [PMID]
32. Brandao CFC, Carvalho FGD, Nicoletti CF, Junqueira-Franco MVM, Couto-Lima CA, AO Souza, et al. UCP2 expression is negatively correlated with and body fat mass after combined physical training: a pilot study. Nutrire. 2020;45:13. [DOI:10.1186/s41110-020-00116-2]
33. Oliveira M, Rheinheimer J, Moehlecke M, Rodriguesa M, Assmannab TS, Leitão CB. UCP2, IL18, and miR-133a-3p are dysregulated in subcutaneous adipose tissue of patients with obesity. Molecular and cellular endocrinology. 2020;509. [DOI:10.1016/j.mce.2020.110805] [PMID]
34. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M, Langin D. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 1997 Dec 1;100(11):2665-70. [DOI:10.1172/JCI119811] [PMID] [PMCID]
35. Simoneau, JA, Kelley DE, Neverova M, Warden CH. Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization. The FASEB journal. 1998;12(15):1739-1745. [DOI:10.1096/fasebj.12.15.1739] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.