Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 314-326 | Back to browse issues page


XML Print


Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil & Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil & Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil & Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil.
Abstract:   (2811 Views)
Background: Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether Angiotensin II modulates resistance to hemolysis and the signaling pathway involved.

Methods: Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done.

Results: Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of PKC as well as PI3K/Akt pathways in this system.

Conclusions: Briefly, Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering both the intracellular pathways.
Full-Text [PDF 347 kb]   (1345 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/03/3 | Accepted: 2021/04/7 | Published: 2021/08/26

References
1. Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol. 2019;10. [DOI:10.3389/fendo.2019.00519] [PMID] [PMCID]
2. Wu C-H, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol. 2018;38(7). [DOI:10.1161/ATVBAHA.118.311282] [PMID] [PMCID]
3. Wang Y, Fan Y, Song Y, Han X, Fu M, Wang J, et al. Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cell Dev Biol Anim. 2019;55(10):801-811. [DOI:10.1007/s11626-019-00395-8] [PMID]
4. Yu Z, Swiercz AP, Moshfegh CM, Hopkins L, Wiaderkiewicz J, Speth RC, et al. Angiotensin II Type 2 Receptor-Expressing Neurons in the Central Amygdala Influence Fear-Related Behavior. Biol Psychiatry. 2019;86(12):899-909. [DOI:10.1016/j.biopsych.2019.05.027] [PMID]
5. Gao Y, Kang L, Li C, Wang X, Sun C, Li Q, et al. Resveratrol Ameliorates Diabetes-Induced Cardiac Dysfunction Through AT1R-ERK/p38 MAPK Signaling Pathway. Cardiovasc Toxicol. 2016;16(2):130-7. [DOI:10.1007/s12012-015-9321-3] [PMID]
6. Zhao Y, Chen X, Cai L, Yang Y, Sui G, Fu S. AngiotensinII/angiotensinII type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Aktpathway. J Cell Physiol. 2010;225(1):168-73. [DOI:10.1002/jcp.22209] [PMID]
7. Kim N, Jung Y, Nam M, Sun Kang M, Lee MK, Cho Y, et al. Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep. 2017;7(1):10328. [DOI:10.1038/s41598-017-09675-3] [PMID] [PMCID]
8. Zhang H, Unal H, Desnoyer R, Han GW, Patel N, Katritch V, et al. Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J Biol Chem. 2015;290(49):29127-39. [DOI:10.1074/jbc.M115.689000] [PMID] [PMCID]
9. Saraiva VB, de Souza Silva L, Ferreira-DaSilva CT, da Silva-Filho JL, Teixeira-Ferreira A, Perales J, et al. Impairment of the Plasmodium falciparum erythrocytic cycle induced by angiotensin peptides. PLoS One. 2011;6(2):e17174. [DOI:10.1371/journal.pone.0017174] [PMID] [PMCID]
10. Kato H, Ishida J, Matsusaka T, Ishimaru T, Tanimoto K, Sugiyama F, et al. Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways. PloS One. 2015;10(6):e0129484. [DOI:10.1371/journal.pone.0129484] [PMID] [PMCID]
11. Kim Y-C, Mungunsukh O, Day RM. Erythropoietin Regulation by Angiotensin II. Vitam Horm. 2017;105:57-777. [DOI:10.1016/bs.vh.2017.02.001] [PMID]
12. Roeloffzen WWH, Kluin-Nelemans HC, Bosman L, de Wolf JTM. Effects of red blood cells on hemostasis. Transfusion. 2010;50(7):1536-44. [DOI:10.1111/j.1537-2995.2010.02586.x] [PMID]
13. Schmidt HHHW, Feelisch M. Red Blood Cell-Derived Nitric Oxide Bioactivity and Hypoxic Vasodilation. Circulation. 2019;139(23):2664-2667. [DOI:10.1161/CIRCULATIONAHA.119.040423] [PMID]
14. Semenov AN, Shirshin EA, Muravyov AV, Priezzhev AV. The Effects of Different Signaling Pathways in Adenylyl Cyclase Stimulation on Red Blood Cells Deformability. Front Physiol. 2019;10. [DOI:10.3389/fphys.2019.00923] [PMID] [PMCID]
15. Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17(1):79-86. [DOI:10.1038/nm.2280] [PMID] [PMCID]
16. Kuck L, Grau M, Bloch W, Simmonds MJ. Shear Stress Ameliorates Superoxide Impairment to Erythrocyte Deformability with Concurrent Nitric Oxide Synthase Activation. Front Physiol. 2019;10:36. [DOI:10.3389/fphys.2019.00036] [PMID] [PMCID]
17. Sugie J, Intaglietta M, Sung LA. Water transport and homeostasis as a major function of erythrocytes. Am J Physiol Heart Circ Physiol. 2018 01;314(5):H1098-107. [DOI:10.1152/ajpheart.00263.2017] [PMID] [PMCID]
18. Padronização e Aplicação da Curva de Fragilidade Osmótica no Auxílio Diagnóstico de Anemias | Caires | Revista Brasileira Multidisciplinar. [cited 2020 May 14]. Available from: http://www.revistarebram.com/index.php/revistauniara/article/view/88/65
19. Bianchi P, Fermo E, Vercellati C, Marcello AP, Porretti L, Cortelezzi A, et al. Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics. Haematologica. 2012 Apr;97(4):516-23. [DOI:10.3324/haematol.2011.052845] [PMID] [PMCID]
20. Vona R, Gambardella L, Ortona E, Santulli M, Malorni W, Carè A, et al. Functional Estrogen Receptors of Red Blood Cells. Do They Influence Intracellular Signaling? Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2019;53(1):186-99. [DOI:10.33594/000000129] [PMID]
21. Peng Z, Luo R, Xie T, Zhang W, Liu H, Wang W, et al. Erythrocyte Adenosine A2B Receptor-Mediated AMPK Activation: A Missing Component Counteracting CKD by Promoting Oxygen Delivery. J Am Soc Nephrol JASN. 2019 Aug;30(8):1413-24. [DOI:10.1681/ASN.2018080862] [PMID] [PMCID]
22. Emilse LAM, Cecilia H, María TM, Eugenia MM, Alicia IB, Lazarte SS. Cryohemolysis, erythrocyte osmotic fragility, and supplementary hematimetric indices in the diagnosis of hereditary spherocytosis. Blood Res. 2018 Mar;53(1):10-7. [DOI:10.5045/br.2018.53.1.10] [PMID] [PMCID]
23. Huisjes R, BogdANOVA A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol. 2018;9:656. [DOI:10.3389/fphys.2018.00656] [PMID] [PMCID]
24. Mendonça-Reis E, Mendonça-Reis E. Effects of TSH on Erythrocyte Osmotic ragility: Signaling Pathway. International Journal of Blood Research and Disorders. 2020;7(1):1-7. [DOI:10.23937/2469-5696/1410048]
25. Bernecker C, Köfeler H, Pabst G, Trötzmüller M, Kolb D, Strohmayer K, et al. Cholesterol Deficiency Causes Impaired Osmotic Stability of Cultured Red Blood Cells. Front Physiol. 2019;10:1529. [DOI:10.3389/fphys.2019.01529] [PMID] [PMCID]
26. Peng Y-C, Qi Y, Zhang C, Yao X, Wu J, Pattaradilokrat S, et al. Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity. mBio. 2020;11(1):e02995-19. [DOI:10.1128/mBio.02995-19]
27. Prnova MS, Kovacikova L, Svik K, Bezek S, Elmazoğlu Z, Karasu C, et al. Triglyceride-lowering effect of the aldose reductase inhibitor cemtirestat-another factor that may contribute to attenuation of symptoms of peripheral neuropathy in STZ-diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(4):651-661. [DOI:10.1007/s00210-019-01769-1] [PMID]
28. Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann Transl Med. 2019;7(12):270. [DOI:10.21037/atm.2019.05.41] [PMID] [PMCID]
29. Ahn H, Shin K, Lee H. Effects of Pulsed Magnetic Field on the Hemolysis of Erythrocytes Exposed to Oxidative Stress. Adv Exp Med Biol. 2020;1232:263-269. [DOI:10.1007/978-3-030-34461-0_33] [PMID]
30. Hasanein P, Mohammadi-Raighan P, Komaki A. Vitamins C and E alone and in combination partly protect against chronic ethanol-induced toxicity in rat erythrocytes. Int J Vitam Nutr Res. 2019;89(3-4):152-160. [DOI:10.1024/0300-9831/a000551] [PMID]
31. Ogbuagu NE, Aluwong T, Ayo JO, Sumanu VO. Effect of fisetin and probiotic supplementation on erythrocyte osmotic fragility, malondialdehyde concentration and superoxide dismutase activity in broiler chickens exposed to heat stress. J Vet Med Sci. 2018;80(12):1895-900. [DOI:10.1292/jvms.18-0477] [PMID] [PMCID]
32. Santander VS, Campetelli AN, Monesterolo NE, Rivelli JF, Nigra AD, Arce CA, et al. Tubulin-Na+, K +-ATPase interaction: Involvement in enzymatic regulation and cellular function. J Cell Physiol. 2019;234(6):7752-7763. [DOI:10.1002/jcp.27610] [PMID]
33. Silva L de S, Peruchetti D de B, Silva CTF-D, Ferreira-DaSilva AT, Perales J, Caruso-Neves C, et al. Interaction between bradykinin B2 and Ang-(1-7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum. Biochim Biophys Acta. 2016;1860(11, Pt A):2438-2444. [DOI:10.1016/j.bbagen.2016.07.011] [PMID]
34. Marathias KP, Agroyannis B, Mavromoustakos T, Matsoukas J, Vlahakos DV. Hematocrit-lowering effect following inactivation of renin-angiotensin system with angiotensin converting enzyme inhibitors andangiotensin receptor blockers. Curr Top Med Chem. 2004;4(4):483-6. [DOI:10.2174/1568026043451311] [PMID]
35. Liu H, Zhang Y, Wu H, D'Alessandro A, Yegutkin GG, Song A, et al. Beneficial Role of Erythrocyte Adenosine A2B Receptor-Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia. Circulation. 2016;134(5):405-21. [DOI:10.1161/CIRCULATIONAHA.116.021311] [PMID] [PMCID]
36. Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol. 2015;39:35-42. [DOI:10.1016/j.semcdb.2015.01.009] [PMID]
37. Sun K, Liu H, Song A, Manalo JM, D'Alessandro A, Hansen KC, et al. Erythrocyte purinergic signaling components underlie hypoxia adaptation. J Appl Physiol (1985). 2017;123(4):951-956. [DOI:10.1152/japplphysiol.00155.2017] [PMID] [PMCID]
38. Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol. 2019;234(3):2373-2385. [DOI:10.1002/jcp.27262] [PMID]
39. Chu Y-H, Lu C-C, Lin T-C, Tsou M-Y, Hsu Y-J, Ho S-T, et al. The Osmopressor-Induced Angiopoietin-1 Secretion in Plasma and Subsequent Activation of the Tie-2/Akt/eNOS Signaling Pathway in Red Blood Cell. Am J Hypertens. 2017;30(3):295-303. [DOI:10.1093/ajh/hpw161] [PMID]
40. Nader E, Grau M, Fort R, Collins B, Cannas G, Gauthier A, et al. Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway. Nitric Oxide. 2018;81:28-35. [DOI:10.1016/j.niox.2018.10.003] [PMID]
41. Alfhili MA, Weidner DA, Lee M-H. Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere. 2019;229:103-111. [DOI:10.1016/j.chemosphere.2019.04.211] [PMID]
42. Peter T, Bissinger R, Lang F. Erythrocyte Shrinkage and Cell Membrane Scrambling after Exposure to the Ionophore Nonactin. Basic Clin Pharmacol Toxicol. 2016;118(2):107-12. [DOI:10.1111/bcpt.12455] [PMID]
43. Silva-Herdade AS, Freitas T, Almeida JP, Saldanha C. Erythrocyte deformability and nitric oxide mobilization under pannexin-1 and PKC dependence. Clin Hemorheol Microcirc. 2015;59(2):155-62. [DOI:10.3233/CH-141833] [PMID]
44. Zhou X, Wang S, Zheng M, Kuver A, Wan X, Dai K, et al. Phosphorylation of ELAVL1 (Ser219/Ser316) mediated by PKC is required for erythropoiesis. Biochim Biophys Acta Mol Cell Res. 2019;1866(2):214-224. [DOI:10.1016/j.bbamcr.2018.10.021] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.