Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 506-517 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fathalla Dawoud S, Mostafa Al-Akra T, Mohamed Zedan A. Hepatoprotective Effects of Chitosan and Chitosan Nanoparticles Against Biochemical, Genetic, and Histological Disorders Induced by the Toxicity of Emamectin Benzoate. rbmb.net. 2021; 10 (3) :506-517
URL: http://rbmb.net/article-1-709-en.html
The Biological and Environmental Sciences Department, Faculty of Home Economic, Al-Azhar University, Tanta, Egypt.
Abstract:   (255 Views)
Background: Emamectin benzoate (EMB) is a biopesticide which used in agriculture as an insecticide. It is easier to reach ecologically and affects human health. This study aims to evaluate the protective effect of chitosan and chitosan nanoparticles against EMB-induced hepatotoxicity.

Methods: Male mice were distributed into four groups: G1: the negative control, G2: EMB group (5 mg/kg diet), G3: EMB with Chitosan, (600 mg/kg diet), and G4: EMB with Chitosan nanoparticles (600 mg/kg diet). The experiment continues for 8 weeks, and the animals were sacrificed, and their organs were removed and immediately weighed after sacrifice. The liver was quickly removed and processed for histopathological and genetic studies.

Results: Emamectin benzoate (EMB) treatment induced oxidative stress by increased levels of Malondialdehyde (MDA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with inhibition of acetylcholinesterase (AChE), Superoxide dismutase (SOD) and Catalase (CAT) levels. EMB produced several histopathological changes in the liver. Relative expressions of studied genes elevated in the liver with increase in DNA damage. Co-treatment with chitosan and chitosan nanoparticles reduced EMB related liver toxicity that belong to biochemical, histopathological, gene expression, and DNA damage by increasing antioxidant capacity.

Conclusions: This study offers insight into the potential for Chitosan and chitosan nanoparticles as a novel natural material against the oxidative stress induced by EMB.
Full-Text [PDF 578 kb]   (158 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/05/15 | Accepted: 2021/07/26 | Published: 2021/12/5

References
1. El-Bialy BE, AbdEldaim MA, Hassan A, Abdel-Daim MM. Ginseng aqueous extract ameliorates lambda- cyhalothrinacetamiprid insecticide mixture for hepatorenal toxicity in rats: role of oxidative stress-mediated proinflammatory and proapoptotic protein expressions, Environ. Environ Toxicol. 2020;35:124-135. [DOI:10.1002/tox.22848] [PMID]
2. Mossa AH, Abdel Rasoul MA, Mohafrash SM. Lactational exposure to abamectin induced mortality and adverse biochemical and histopathological effects in suckling pup. Environ Sci Pollut Res Int. Int. 2017;24(11):10150-10165. [DOI:10.1007/s11356-017-8600-x] [PMID]
3. Santosh K, Joonseok K, Hyerim K, Gupta MK, Dutta PK. A new chitosan thymine conjugates: synthesis, characterization and biological activity. Int J Biol Macromol. 2012;50(3):493-502. [DOI:10.1016/j.ijbiomac.2012.01.015] [PMID]
4. Ukun Q, Ronge X, Song L, Kecheng L, Xiangtao M, Rongfeng L, et al. Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydrate Polymers. 2012;87(4):2664-2670. [DOI:10.1016/j.carbpol.2011.11.048]
5. Patel VR, Agrawal YK. Nanosuspension: An Approach to Enhance Solubility of Drugs. J Adv Pharm. Technol Res. 2011;2(2):81-87. [DOI:10.4103/2231-4040.82950] [PMID] [PMCID]
6. Mahadule RK, Arjunwadkar PR, Mahabole MP. Synthesis and Characterization of Ca Sr Bal- - Fe12 - La 019 by Standard Ceramic Method. International Journal of Metals. 2013. [DOI:10.1155/2013/198970]
7. Wardani G, Eraiko K, Koerniasari A, Sudjarwo, SA. Protective Activity of Chitosan Nanoparticle against Cadmium Chloride Induced Gastric Toxicity in Rat. Journal of Young Pharmacists. 2018;10(3):303-307. [DOI:10.5530/jyp.2018.10.67]
8. Ohkawa H, Ohishi W, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Anal Biochem. 1979;95(2):351-8. [DOI:10.1016/0003-2697(79)90738-3]
9. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [DOI:10.1016/S0076-6879(84)05016-3]
10. Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849-54. [DOI:10.1016/S0006-291X(72)80218-3]
11. Reitman S, Frankle S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Path. 1957; 28(1):56-63. [DOI:10.1093/ajcp/28.1.56] [PMID]
12. Eldamaty, SE, Heba Elbasiouny, Amira M Elmoslemany, Lamiaa M Abd El-Maoula, Ola Ibrahim El-Desoky, Medhat Rehan, et al. Protective Effect of Wheat and Barley Grass Against the Acute Toxicological Effects of the Concurrent Administration of Excessive Heavy Metals in Drinking Water on the Rats Liver and Brain. Appl Sci. 2021;11(11). [DOI:10.3390/app11115059]
13. Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother. 2018;105:1335-1343. [DOI:10.1016/j.biopha.2018.06.105] [PMID]
14. Suvarna SK, Layton C, Bancroft JD. Bancroft's Theory and Practice of Histological Techniques. 7th Ed. Elsevier, Churchill Living stone England. (2013).
15. Khaldoun OH, Allorgec D, Richevalc C, Lhermittec M, Djenase N. Emamectin benzoate (Proclaim®) mediates biochemical changes and histopathological damage in the kidney of male Wistar rats (Rattus norvegicus). Toxicologie Analytique et Clinique. 2015;27(2):72-80. [DOI:10.1016/j.toxac.2014.11.002]
16. Abdel-Wahhab MA, Aljawish A, Aziza A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol. 2017;99:209-221. [DOI:10.1016/j.fct.2016.12.002] [PMID]
17. Djordjevic J, Djordjevic A, Adzic M, Elakovi'c I, Mati'c G, Radojcic MB. Fluoxetine affects antioxidant system and promotes apoptotic signaling in wistar rat liver. Eur J Pharmacol. 2011;659(1):61-6. [DOI:10.1016/j.ejphar.2011.03.003] [PMID]
18. Ahmed Mobasher M, Galal El-Tantawi H, Samy El-Said K. Metformin Ameliorates Oxidative Stress Induced by Diabetes Mellitus and Hepatocellular Carcinoma in Rats. Rep Biochem Mol Biol. 2020;9(1):115-128. [DOI:10.29252/rbmb.9.1.115] [PMID] [PMCID]
19. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316-28. [DOI:10.1016/j.numecd.2005.05.003] [PMID]
20. Zhu WJ, Li M, Liu C,Qu JP, Min YH, Xu SW, et al. Avermectin induced liver injury in pigeon: mechanisms of apoptosis and oxidative stress. Ecotoxicol. Ecotoxicol Environ Saf. 2013;98:74-81. [DOI:10.1016/j.ecoenv.2013.09.021] [PMID]
21. Abou-Zeid SM, AbuBakr HO, Mohamed MA. El-Bahrawyd A. Ameliorative effect of pumpkin seed oil against Emamectin induced toxicity in mice. Biomedicine & Pharmacotherapy. 2018; 98:242-251. [DOI:10.1016/j.biopha.2017.12.040] [PMID]
22. Subhapradha N, Saravanan R, Ramasamy P, Srinivasan A, Shanmugam V, Shanmugam A. Hepatoprotective Effect of β-Chitosan from Gladius of Sepioteuthislessoniana Against Carbon Tetrachloride-Induced Oxidative Stress in Wistar Rats. Appl Biochem Biotechnol. 2014;172(1):9-20. [DOI:10.1007/s12010-013-0499-1] [PMID]
23. Cheraghi M, Ahmadvand H, Maleki A, Babaeenezhad E, Shakiba S, Hassanzadeh F. Oxidative Stress Status and Liver Markers in Coronary Heart Disease. rbmb.net. 2019;8(1):49-55.
24. Hernández AF, Gil F, Lacasa˜na M, Rodríguez-Barranco M, Tsatsakis AM, Requena M, et al. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem Toxicol. 2013;61:144-51. [DOI:10.1016/j.fct.2013.05.012] [PMID]
25. Khaldoun OH, Richeval C, Lebaili N, Zerrouki-Daoudi N, Baha M, Djennas et al. Ameliorative effect of vitamin C against hepatotoxicity induced by Emamectin benzoate in rats. Hum Exp Toxicol. 2017;36(7):709-717. [DOI:10.1177/0960327116661022] [PMID]
26. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104(1-3):129-40. [DOI:10.1016/0300-483X(95)03156-A]
27. Anraku M, Michihara A, Yasufuku T, Akasaki K, Tsuchiya D, Nishio H, et al. The Antioxidative and Antilipidemic Effects of Different Molecular Weight chitosans in Metabolic Syndrome Model Rats. Biol Pharm Bull. 2010;33(12):1994-8. [DOI:10.1248/bpb.33.1994] [PMID]
28. Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, et al. Identification & charac¬terization of mutations in housefly (Muscadomestica) acetylcholinesterase involved in insecticide resistance. Biochem J. 2001;359(Pt 1):175-81. [DOI:10.1042/bj3590175] [PMCID]
29. Cárcamo JG, Aguilar MN, Carreño CF, Vera T, Arias-Darraz L, Figueroa JE, et al. Consecutive Emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchusmykiss), Comp. Biochem. Physiol. C: Toxicol Pharmacol. 2017;191:129-137. [DOI:10.1016/j.cbpc.2016.10.004] [PMID]
30. Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, et al. Dimerumic acid as an antioxidant of the mold, Monascusanka anka. Free Radic Biol Med. 2000;28(6):999-1004. [DOI:10.1016/S0891-5849(00)00188-X]
31. Marí M, Cederbaum AI. Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against short term oxidative stress. Hepatology. 2001;33(3):652-61. [DOI:10.1053/jhep.2001.22521] [PMID]
32. Azoz A, Ibrahim KA, Abdel Kader IY, Tawfik A. Tracking of Apoptosis Induced by Emamectin Benzoate in Fetuses of Hypothyroid Rats. International Journal of Pharmaceutical Sciences Review and Research. 2020;13:81-89.
33. Zhang Z, Zhao X, Qin X. Potential genotoxic and cytotoxicity of Emamectin benzoate in human normal liver cells. Oncotarget. 2017; 8: 82185-82195. [DOI:10.18632/oncotarget.18988] [PMID] [PMCID]
34. Liu C, Li M, Cao Y, Qu J, Zhang Z, Xu S, ShuLi S. Effects of avermectin on immune function and oxidative stress in the pigeon spleen.Chemico-Biological Interactions. 2014;210: 43-50. ISSN00092797. [DOI:10.1016/j.cbi.2013.12.015] [PMID]
35. Duzguner V, Erdogan S. Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver & central nervous system of rats.Pesticide Biochemistry and Physiology. 2014;104:58-64. [DOI:10.1016/j.pestbp.2012.06.011]
36. Park PJ, Je JY, Kim SK. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer, Carbohydr. Polym. 2004; 55:17-22. [DOI:10.1016/j.carbpol.2003.05.002]
37. Ghadi A, Mahjoub S, Tabandeh F, Talebnia F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering, Caspian. J. Intern. Med. 2014; 5:156‑161.
38. Wang B, Zhang S, Wang X, Yang S, Jiang O, Xu Y, Xia W. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice, Int. J. Biol. Macromol. 2017;102:104-110. [DOI:10.1016/j.ijbiomac.2017.03.187] [PMID]
39. Sudjarwo SA, Wardani G, Eraiko K, Koerniasari N. Antioxidant and anti‑caspase‑3 activity of chitosan‑pinusmerkusiiextract nanoparticle on lead acetate‑induced hepatotoxicity,Pharmacogn.Mag. 2020;15:253-8. [DOI:10.4103/pm.pm_393_18]
40. Dusinska M. Collins AR. Collins. The comet assay in human biomonitoring: gene environment interactions, Mutagenesis. 2008;23:191-205. [DOI:10.1093/mutage/gen007] [PMID]
41. Wu X, Zhang L, Yang C, Zong M, Huang Q, Tao L. Detection on Emamectin benzoate-induced apoptosis and DNA damage in SpodopterafrugiperdaSf-9 cell line, Pestic. Biochem. Physiol. 2016; 126:6-12. [DOI:10.1016/j.pestbp.2015.06.009] [PMID]
42. Azemi ME, Namjoyan F, Khodayar MJ, Ahmadpour F, DarvishPadok A, Panahi M. The antioxidant capacity and anti-diabetic effect of Boswel liaserrataTriana and Planch aqueous extract in fertile female diabetic rats and the possible effects on reproduction and histological changes in the liver and kidneys. Jundishapur J Nat Pharm Prod. 2012;7:168-675. https://doi.org/10.17795/jjnpp-6755 [DOI:10.5812/jjnpp.6755] [PMID] [PMCID]
43. Shokrzadeh M, Ashari S, Ghassemi-Barghi N. Attenuation of Doxorubicin Induced Genotoxicity in HepG2 Cells: Effect of Melatonin Loading Chitosan-Tripolyphosphate Nanoparticles on Oxidative stress Corresponding author. Int J Cancer Res Ther. 2020.
44. Kumar M, Sharma VL, Sehgal A, Jain M. Protective effects of green and white tea against benzo (a) pyrene induced oxidative stress and DNA damage in murine model. Nutr Cancer. 2012;64(2):300-6. [DOI:10.1080/01635581.2012.648300] [PMID]
45. Temiz O. The Potential of Emamectin Benzoate to Induce Kidney DNA Oxidation, Heat Shock Protein Levels and Apoptosis in Male Mice. 2020. [DOI:10.31080/ASPS.2020.04.0484]
46. El-Denshary ES, Aljawish A, El-Nekeety AA, Hassan NS, Saleh R H, Rihn BH, et al. Possible Synergistic Effect and Antioxidant Properties of Chitosan Nanoparticles and Quercetin against Carbon Tetrachloride- Induce Hepatotoxicity in Rats. Soft Nanoscience Letters. 2015;5:36-51. [DOI:10.4236/snl.2015.52005]
47. Ghadi A, Mahjoub S, Tabandeh F, Talebnia F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian J Intern Med. 2014;5:156‑61.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb