Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 462-470 | Back to browse issues page


XML Print


Department of Pathological Analysis, College of Science, University of Thi-Qar,Thi-Qar, Iraq.
Abstract:   (2479 Views)
Background: Parvovirus B19 (B19) infection is linked with various diseases. Cytokines play critical roles in cellular response to viral infection. It has also been reported that’s susceptibility of the ABO blood type people to several viral infection. In this study, we evaluated interleukin 6 (IL-6), interleukin 8(IL-8), and interferon gamma (IFN-γ) levels in aborted women infected with parvovirus B19 (B19+/Abr+) and uninfected with B19(B19-/Abr+) in comparison with healthy women (B12-/Abr-) and susceptibility of their RhD blood type to contract B19.

Methods: B19+/Abr+ were diagnosed using IgM and IgG antibodies against B19, and the concentrations of IL-6, IL-8, and IFN-γ were determined using enzyme-linked immunosorbent assay (ELISA) test in both B19+/Abr+, B19-/Abr+, and B19-/Abr-. Here, we also collected blood groups, number of abortion, and gestational ages from 200 B19+/Abr+ along with the same number ofB19-/Abr+ and B19-/Abr-.

Results: The levels of IFN-γ were higher in serum of B19-/Abr+andB19+/Abr+ group in comparison to B19-/Abr-, while the serum levels of IL-6, IL-8were increased in B19+/Abr+ group in comparisontoB19-/Abr+ and B19-/Abr-. Our analyzed data also showed that aborted women with RhD+ are more susceptible to contract s B19 than people with RhD- blood type.

Conclusions: B19 infection may differently modulate the amount of cytokines in the plasma of aborted women. So, it can be suggested that IL-6, IL-8, and IFN-γ potentially useful as markers for inflammation intrauterine. The susceptibility/protection of aborted women against B19 might be determined based on RhD blood type.
Full-Text [PDF 373 kb]   (1118 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/05/25 | Accepted: 2021/07/18 | Published: 2021/12/5

References
1. Cohain JS, Buxbaum RE, Mankuta D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more. BMC Pregnancy and Childbirth. 2017;17(1):437. [DOI:10.1186/s12884-017-1620-1] [PMID] [PMCID]
2. Bricker L, Farquharson RG. Types of pregnancyloss in recurrent miscarriage: implications for research and clinical practice. Hum Reprod. 2002;17(5):1345-50. [DOI:10.1093/humrep/17.5.1345] [PMID]
3. Giorgio E, De Oronzo MA, Iozza I, Di Natale A, Cianci S, Garofalo G, et al. Parvovirus B19 during pregnancy: a review. J Prenat Med. 2010;4(4):63-6
4. Zhang J-M, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27-37. [DOI:10.1097/AIA.0b013e318034194e] [PMID] [PMCID]
5. Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol. 2019;10:778. [DOI:10.3389/fimmu.2019.00778] [PMID] [PMCID]
6. Ma J, Zhang X, He G, Yang C. Association between TNF, IL1B, IL6, IL10 and IFNG polymorphisms and recurrent miscarriage: a case control study. Reprod Biol Endocrinol. 2017;15:83. [DOI:10.1186/s12958-017-0300-3] [PMID] [PMCID]
7. Camil L, Viorica E. Interleukin-6 and interleukin-10 gene polymorphisms and recurrent pregnancy loss in Romanian population. Iran J Reprod Med. 2014;12(9):617-622.
8. Yockey LJ, Iwasaki A. Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity. 2018;49(3):397-412. [DOI:10.1016/j.immuni.2018.07.017] [PMID] [PMCID]
9. Austgulen R, Lien E, Liabakk N-B, Jacobsen G, Arntzen KJ. Increased levels of cytokines and cytokine activity modifiers in normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 1994;57(3):149-55. [DOI:10.1016/0028-2243(94)90291-7]
10. Giakoumelou S, Wheelhouse N, Cuschieri K, Entrican G, Howie SEM, Horne AW. The role of infection in miscarriage. Hum Reprod Update. 2016;22(1):116-33. [DOI:10.1093/humupd/dmv041] [PMID] [PMCID]
11. Shabani Z, Esghaei M, Keyvani H, Shabani F, Sarmadi F, Mollaie H, et al. Relation between parvovirus B19 infection and fetal mortality and spontaneous abortion. Med J Islam Repub Iran. 2015;29:197.
12. Göker H, Aladağ Karakulak E, Demiroğlu H, Ayaz Ceylan Ç M, Büyükaşik Y, Inkaya A, et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk J Med Sci. 2020;50(4):679-683. [DOI:10.3906/sag-2005-395] [PMID] [PMCID]
13. Schoenborn JR, Wilson CB. Regulation of Interferon‐γ During Innate and Adaptive Immune Responses. Adv Immunol. 2007;96:41-101. [DOI:10.1016/S0065-2776(07)96002-2]
14. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293-301. [DOI:10.1038/nature14189] [PMID]
15. Isa A, Lundqvist A, Lindblom A, Tolfvenstam T, Broliden K. Cytokine responses in acute and persistent human parvovirus B19 infection. Clin Exp Immunol. 2007;147(3):419-425. [DOI:10.1111/j.1365-2249.2006.03286.x] [PMID] [PMCID]
16. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11:1708. [DOI:10.3389/fimmu.2020.01708] [PMID] [PMCID]
17. Guzeloglu-Kayisli O, Kayisli UA, Taylor HS. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin Reprod Med. 2009;27(1):62-79. [DOI:10.1055/s-0028-1108011] [PMID] [PMCID]
18. Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci. 2019;20(21):5332. [DOI:10.3390/ijms20215332] [PMID] [PMCID]
19. Jasper MJ, Tremellen KP, Robertson SA. Reduced expression of IL-6 and IL-1alpha mRNAs in secretory phase endometrium of women with recurrent miscarriage. J Reprod Immunol. 2007;73(1):74-84. [DOI:10.1016/j.jri.2006.06.003] [PMID]
20. Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192(2):259-270. [DOI:10.1084/jem.192.2.259] [PMID] [PMCID]
21. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009;80(5):848-59. [DOI:10.1095/biolreprod.108.073353] [PMID] [PMCID]
22. Cheng Y, Cheng G, Chui CH, Lau FY, Chan PK, Ng MH, et al. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA. 2005;293(12):1450-1. [DOI:10.1001/jama.293.12.1450-c]
23. Borén T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science. 1993;262(5141):1892-5. [DOI:10.1126/science.8018146] [PMID]
24. Wang DS, Chen DL, Ren C, Wang ZQ, Qiu MZ, Luo HY, et al. ABO blood group, hepatitis B viral infection and risk of pancreatic cancer. Int J Cancer. 2012;131(2):461-8. [DOI:10.1002/ijc.26376] [PMID]
25. Loscertales MP, Owens S, O'Donnell J, Bunn J, Bosch-Capblanch X, Brabin BJ. ABO blood group phenotypes and Plasmodium falciparum malaria: unlocking a pivotal mechanism. Adv Parasitol. 2007;65:1-50. [DOI:10.1016/S0065-308X(07)65001-5]
26. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-34. [DOI:10.1056/NEJMoa2020283] [PMID] [PMCID]
27. Al-Fahad D, Vaiyapuri S. Blood types and their relationship with COVID-19 among a study population in Iraq. University of Reading. 2020.
28. Majeed KR, Al-Fahad D, Jalood HH, Mrtatha K A. Sumiktsal S, Harry F W, et al. RhD blood type significantly influences susceptibility to contract COVID-19 among a study population in Iraq. F1000Research. 2021;10:38. [DOI:10.12688/f1000research.27777.1]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.