Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 664-674 | Back to browse issues page


XML Print


University of Anbar, Al-anbar Province, Iraq.
Abstract:   (2573 Views)
Background: Chronic kidney disease (CKD), is a major public health challenge worldwide. It is more prevalent in developed countries compared with the rest of the world, due to the higher rates of life expectancy and unhealthy lifestyle related factors. This aim of the current study is to evaluate the relationship between interleukins IL-2 and IL-17 concentrations and kidney function markers in men with CKD.

Methods: Forty-five men with CKD and seventy controls were enrolled in the current study to assess the relationship between interleukin-2 (IL-2), interleukin-17 (IL-17), and CKD parameters. Fasting blood samples were collected from patients with CKD and their controls at same time. Serum IL-2, and IL-17 were measured in patients with CKD and their controls, and then the relationship between these interleukins and serum creatinine, serum urea, serum uric acid and urine albumin were evaluated.

Results: A significant relationship was detected between IL-2 (p< 0.001), IL-17 (p< 0.001) levels and serum creatinine concentrations. The significant increase of IL-2 and IL-17 levels were also paralleled with a significant increase in serum urea (p< 0.001), and urine albumin (p< 0.001) concentrations respectively.

Conclusions: IL-2 and IL-17 may play a critical role in the pathophysiology of CKD. The significant increase of IL-2 and IL-17 is associated with significantly high concentrations of creatinine, serum urea and urine albumin suggesting that these interleukins may be used as targets for future biomarkers and molecular therapy. However, due to limited sample size of the current study, larger prospective cohorts are needed to confirm these observations.
Full-Text [PDF 519 kb]   (1151 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/08/31 | Accepted: 2021/09/19 | Published: 2022/02/7

References
1. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019;95(5):1048-1050. [DOI:10.1016/j.kint.2019.07.012] [PMID]
2. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. [DOI:10.1159/000368940] [PMID]
3. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018;392(10159):2052-2090. [DOI:10.1016/S0140-6736(18)31694-5]
4. Ricardo AC, Anderson CA, Yang W, Zhang X, Fischer MJ, Dember LM, et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: finding from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2015;65(3):412-24. [DOI:10.1053/j.ajkd.2014.09.016] [PMID] [PMCID]
5. Bleyer AJ, Shemanski LR, Burke GL, Hansen KJ, Appel RG. Tobacco, hypertension, and vascular disease: Risk factors for renal functional decline in an older population. Kidney Int. 2000;57(5):2072-9. [DOI:10.1046/j.1523-1755.2000.00056.x] [PMID]
6. Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71(2): 159-66. [DOI:10.1038/sj.ki.5002017] [PMID]
7. Collaborators GRFS. Global regional and national comparative risk assisment of 76 behavioral environment, occupational and metabolic risk or clusters of risks in 188 countries 1990-2013: a systemic analysis for the GBD 2013. Lancet. 2015;386(10010):2287-323. [DOI:10.1016/S0140-6736(15)00128-2]
8. Kim MG, Kim SC, Ko YS, Hee YL, Jo SK, Cho W. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PloS One 2015;10(12):e0143961. [DOI:10.1371/journal.pone.0143961] [PMID] [PMCID]
9. Kon V, Linton MRF, Fazio S. Atherosclerosis in chronic kidney disease: the role of macrophages. Nat Rev Nephrol. 2011;7(1):45-54. [DOI:10.1038/nrneph.2010.157] [PMID] [PMCID]
10. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis. 1998;32:853-906. [DOI:10.1016/S0272-6386(98)70145-3]
11. Carrero JJ, Park SH, Axelsson J, Lindholm B, Stenvinkel P. Cytokines, atherogenesis, and hypercatabolism in chronic kidney disease: a dreadful triad. Semin Dial. 2009;22(4):381-6. [DOI:10.1111/j.1525-139X.2009.00585.x] [PMID]
12. Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24(8):1445-52. [DOI:10.1007/s00467-008-1046-0] [PMID]
13. Koelman L, Pivovarova-Ramich O, Pfeiffer AFH, Grune T, Aleksandrova K. Cytokines for evaluation of chronic inflammatory status in ageing research: reliability and phenotypic characterization. Immunity and Ageing. 2019;16:11. [DOI:10.1186/s12979-019-0151-1] [PMID] [PMCID]
14. Mittal RD, Manchanda PK. Association of interleukin (IL)-4 intron-3 and IL-6 -174 G/C gene polymorphism with susceptibility to end-stage renal disease. Immunogenetics. 2007;59(2):159-65. [DOI:10.1007/s00251-006-0182-6] [PMID]
15. Fasoulakis Z, Kolios G, Papamanolis V, Kontomanolis EN. Interleukins associated with breast cancer. Cureus. 2018;10(11):e3549. [DOI:10.7759/cureus.3549]
16. Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195(6); 784-791. [DOI:10.1164/rccm.201604-0799OC] [PMID] [PMCID]
17. Traynor J, Mactier R, Geddes CC, Fox JG. How to measure renal function in clinical practice. BMJ. 2006;333(7571):733-737. [DOI:10.1136/bmj.38975.390370.7C] [PMID] [PMCID]
18. Nickolas TL, Barasch J, Devarajan P. Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17(2):127-32. [DOI:10.1097/MNH.0b013e3282f4e525] [PMID]
19. Ortiz A, Covic A, Fliser D, Fouque D, Goldsmith D, Kanbay M, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014;383(9931):1831-43. [DOI:10.1016/S0140-6736(14)60384-6]
20. Lang J, Katz R, IX JH, Gutierrez OM, Peralta CA, Parikh CR, et al. Association of serum kidney albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrol Dial Transplant. 2018;33(6):986-992. [DOI:10.1093/ndt/gfx229] [PMID] [PMCID]
21. Forni LG, Darmon M, Ostermann M, Straaten HM O-V, Pettilä V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855-866. [DOI:10.1007/s00134-017-4809-x] [PMID] [PMCID]
22. Simerville JA, Maxted WC, Pahira JJ. Urinalysis: A comprehensive review. Am Fam Physician. 2005;71(6):1153-1162.
23. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, et al. Kidney Disease Improving Global Outcomes (KDIGO) CKD Work Group-KDIGO 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(1):1-150.
24. Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which?. Nephrol Dial Transplant. 2013;28(9):2221-2228. [DOI:10.1093/ndt/gft029] [PMID] [PMCID]
25. Stenvinkel P, Alvestrand A. Inflammation in end-stage renal disease: sources, consequences and therapy. Semin Dial. 2002;15(5):329-37. [DOI:10.1046/j.1525-139X.2002.00083.x] [PMID]
26. Zickert A, Amoudruz P, Sundström Y, Rönnelid J, Malmström V, Gunnarsson I. IL-17 and IL-23 in lupus nephritis - association to histopathology and response to treatment. BMC Immunol. 2015;16(1):7. [DOI:10.1186/s12865-015-0070-7] [PMID] [PMCID]
27. Mohammadi M, Gozashti MH, Aghadavood M, Mehdizadeh MR, Hayatbakhsh MM. Clinical significance of serum TNF-a and IL-6 levels in patients with metabolic syndrome. Rep Biochem Mol Biol. 2017;6(1):74-79.
28. Raghunathachar Sahana K, Akila P, Prashant V, Sharath Chandra B, Nataraj SM. Quantitation of vascular endothelial growth factor and interleukin-6 in different stages of breast cancer. Rep Biochem Mol Biol. 2017;6(1):33-39.
29. Lee BT, Ahmed FA, Lee Ham L, Teran FJ, Chen C-S, Liu Y, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 2015;16:77. [DOI:10.1186/s12882-015-0068-7] [PMID] [PMCID]
30. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, et al. Interleukin-10, IL-6 and TNF-alpha: central factors in the altered cytokine network of end-stage renal disease - the good, the bad and the ugly. Kidney Int. 2005;67(4):1216-1233. [DOI:10.1111/j.1523-1755.2005.00200.x] [PMID]
31. Tamura MK. Incidence, management, and outcome of end-stage renal disease in the elderly. Curr Opin Nephrol Hypertens. 2009;18(3):252-257. [DOI:10.1097/MNH.0b013e328326f3ac] [PMID] [PMCID]
32. Hallan S I, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and the association of kidney measures with mortality and end-stage renal disease. JAMA. 2012;308(22):2349-60. [DOI:10.1001/jama.2012.16817] [PMID] [PMCID]
33. Nitta K, Okada K, Yanai M, Takahashi S. Aging and chronic kidney disease. Kidney Blood Press Res. 2013;38(1):109-20. [DOI:10.1159/000355760] [PMID]
34. De Nicola L, Minutolo R, Chiodini P, Borrelli S, Zoccali C, Postorino M, et al. The effect of increasing age on the prognosis of non- dialysis patients with chronic kidney disease receiving stable nephrology care. Kidney Int. 2012;82(4):482-488. [DOI:10.1038/ki.2012.174] [PMID]
35. Derhaschnig U, Kittler H, Woisetschlager C, Bur A, Herkner H, Hirschl MM. Microalbumin measurement alone or calculation of the albumin creatinine ratio for the screening of hypertension patients?. Nephrol Dial Transplant. 2002;17(1):81-85. [DOI:10.1093/ndt/17.1.81] [PMID]
36. Pugia MJ, Murakami M, Lott JA, Ohta Y, Kitagawa T, Yamauchi K, et al. Screening for proteinuria in Japanese schoolchildren: a new approach. Clin Chem Lab Med. 2000;38(10):975-82. [DOI:10.1515/CCLM.2000.145] [PMID]
37. Imai E, Yamagata K, Iseki K, Iso H, Horio M, Mkino H, et al. Kidney disease screening program in Japan: history, outcome and perspectives. Clin J Am Soc Nephrol. 2007;2(6):1360-6. [DOI:10.2215/CJN.00980207] [PMID]
38. Salazar JH. Overview of urea and creatinine. Lab Medicine 2014; 45(1): e19-e20. [DOI:10.1309/LM920SBNZPJRJGUT]
39. Lyman JL. Blood urea nitrogen and creatinine. Emerg Med Clin North Am. 1986;4(2):223-233. [DOI:10.1016/S0733-8627(20)30997-4]
40. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-88. [DOI:10.1016/j.bbamcr.2011.01.034] [PMID]
41. ERA-EDTA Council; ERACODA Working Group. Chronic kidney disease is a key risk factor for severe COVID-19: a call to action by the ERA-EDTA. Nephrol Dial Transplant. 2021;36(1):87-94. [DOI:10.1093/ndt/gfaa314] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.