Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 518-526 | Back to browse issues page


XML Print


Department of Pathological Analysis, College of Science, University of Thi-Qar, Thi-Qar, 64001 Iraq.
Abstract:   (2741 Views)
Background: Phosphatidylinositol 3,4,5-trisphosphate [PtdIns (3,4,5) P3) and Phosphatidylinositol 4,5-trisphosphate (PtdIns (4,5) P2] form an insignificant number of phospholipids but play important roles in controlling membrane-bound signalling. Little attention has been given to visualize and monitor changes or differences in the local generation of PtdIns (4,5) P2 and PtdIns (3,4,5) P3 in the cell membranes of MDAMB- 231 breast cancer cell lines.

Methods: PLCδ1-PH-GFP and Btk-PH-GFP were used as biosensors to detected PtdIns (4,5) P2 and PtdIns(3,4,5)P3 respectively. These biosensors and antibodies were transfected, immuostained and then visualized by confocal microscopy on different cell surfaces.

Results: Our results showed that PLCδ1-PH-GFP/mCherry was localized at the cell membrane, while Btk-PH-GFP/mCherry was sometimes localized at the cell membrane but there was also a large amount of fluorescence present in the cytosol and nucleus. Our results also showed that the cells that expressed low levels of Btk-PH-GFP the fluorescence was predominantly localised to the cell membrane. While the cells that expressed high levels of Btk-PH-GFP the fluorescence was localization in the cytosol and cell membrane. Our results demonstrated that both anti-PtdIns(4,5)P2 and anti-PtdIns(3,4,5)P3 antibodies were localized everywhere in cell.

Conclusions: Our results suggest that PLCδ1-PH-GFP and Btk-PH-GFP/mCherry have more specificity, reliability, suitability and accuracy than antibodies in binding with and detecting PtdIns(4,5)P2 and PtdIns (3,4,5)P3 and in studying the molecular dynamics of phospholipids in live and fixed cells.
Full-Text [PDF 393 kb]   (1264 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/09/5 | Accepted: 2021/09/19 | Published: 2022/02/7

References
1. Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid Nanotechnology. Int J Mol Sci. 2013;14(2):4242-4282. [DOI:10.3390/ijms14024242] [PMID] [PMCID]
2. Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol. 2015;6:117. [DOI:10.3389/fimmu.2015.00117] [PMID] [PMCID]
3. Lemmon MA. Pleckstrin Homology (PH) domains and phosphoinositides. Biochem Soc Symp. 2007(74):81-93. [DOI:10.1042/BSS2007c08]
4. Alfahad D, Alharethi S, Alharbi B, Mawlood K, Dash P. PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line. Turk J Biol. 2020;44(6):381-92. [DOI:10.3906/biy-2004-108] [PMID] [PMCID]
5. Santos CR, Schulze A. Lipid metabolism in cancer. The FEBS journal. 2012;279(15):2610-23. [DOI:10.1111/j.1742-4658.2012.08644.x] [PMID]
6. Alharbi BF, Al-Fahad D, Dash PR. Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells 31 Cells. Rep Biochem Mol Biol. 2021;10(2):145-155. [DOI:10.52547/rbmb.10.2.145] [PMID] [PMCID]
7. Al-Fahad D, Alharbi BF, Bih CI, Dash PR. Nitric oxide may regulate focal adhesion tu rnover and cell migration in MDA-MB-231 breast cancer cells by modulating early endosome trafficking. Med J Cell Biol. 2021;9(2):60-72. [DOI:10.2478/acb-2021-0010]
8. Balla T. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiol Rev. 2013;93(3):1019-1137. [DOI:10.1152/physrev.00028.2012] [PMID] [PMCID]
9. Huang YE, Iijima M, Parent CA, Funamoto S, Firtel RA, Devreotes P. Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol Biol Cell. 2003;14(5):1913-1922. [DOI:10.1091/mbc.e02-10-0703] [PMID] [PMCID]
10. Dormann D, Weijer G, Parent CA, Devreotes PN, Weijer CJ. Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr Biol. 2002;12(14):1178-88. [DOI:10.1016/S0960-9822(02)00950-8]
11. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 2000;287(5455):1037-40. [DOI:10.1126/science.287.5455.1037] [PMID] [PMCID]
12. Manna D, Albanese A, Park WS, Cho W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem. 2007;282(44):32093-105. [DOI:10.1074/jbc.M703517200] [PMID]
13. Varnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem. 1999;274(16):10983-9. [DOI:10.1074/jbc.274.16.10983] [PMID]
14. Balla T, Varnai P. Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Current protocols in cell biology / editorial board, Juan S. Bonifacino... [et al.]. 2009;Chapter 24:Unit 24.4. [DOI:10.1002/0471143030.cb2404s42] [PMID] [PMCID]
15. Ji C, Zhang Y, Xu P, Xu T, Lou X. Nanoscale Landscape of Phosphoinositides Revealed by Specific Pleckstrin Homology (PH) Domains Using Single-molecule Superresolution Imaging in the Plasma Membrane. J Biol Chem. 2015;290(45):26978-26993. [DOI:10.1074/jbc.M115.663013] [PMID] [PMCID]
16. Falkenburger BH, Jensen JB, Hille B. Kinetics of M(1) muscarinic receptor and G protein signaling to phospholipase C in living cells. J Gen Physiol. 2010;135(2):81-97. [DOI:10.1085/jgp.200910344] [PMID] [PMCID]
17. Thapa N, Choi S, Tan X, Wise T, Anderson RA. Phosphatidylinositol Phosphate 5-Kinase Igamma and Phosphoinositide 3-Kinase/Akt Signaling Couple to Promote Oncogenic Growth. J Biol Chem. 2015;290(30):18843-54. [DOI:10.1074/jbc.M114.596742] [PMID] [PMCID]
18. Nguyen H-N, Yang J-M, Afkari Y, Park BH, Sesaki H, Devreotes PN, et al. Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. PNAS. 2014;111(26):E2684-E2693. [DOI:10.1073/pnas.1409433111] [PMID] [PMCID]
19. Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta. 2015;1851(6):736-45. [DOI:10.1016/j.bbalip.2014.12.008] [PMID] [PMCID]
20. Ji C, Lou X. Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes. J Vis Exp. 2016;(116):54466. [DOI:10.3791/54466]
21. Patterson GH. Fluorescence microscopy below the diffraction limit. Semin Cell Dev Biol. 2009;20(8):886-893. [DOI:10.1016/j.semcdb.2009.08.006] [PMID] [PMCID]
22. Wang J, Richards DA. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open. 2012;1(9):857-62. [DOI:10.1242/bio.20122071] [PMID] [PMCID]
23. Warren SC, Margineanu A, Katan M, Dunsby C, French PMW. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Int J Mol Sci. 2015;16(7):14695-716. [DOI:10.3390/ijms160714695] [PMID] [PMCID]
24. Czech MP. PIP2 and PIP3: complex roles at the cell surface. Cell. 2000;100(6):603-6. [DOI:10.1016/S0092-8674(00)80696-0]
25. Al-Fahad, D. Regulation of Focal Adhesions by PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in Cancer Cell Migration. PhD thesis, University of Reading.2018.
26. Al-Fahad, D. The possible role of PtdIns(4,5) P2 and PtdIns(3,4,5) P3 at the leading and trailing edges of the breast cancer cell line. I Iberoam J Med. 2021;3 (1): 26-32. [DOI:10.53986/ibjm.2021.0006]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.