Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 224-237 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdelgwad M, Sabry D, Mohamed Abdelgawad L, Mohamed Elroby Ali D. In Vitro Differential Sensitivity of Head and Neck Squamous Cell Carcinoma to Cisplatin, Silver Nanoparticles, and Photodynamic Therapy. rbmb.net 2022; 11 (2) :224-237
URL: http://rbmb.net/article-1-812-en.html
Medical applications of lasers Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt.
Abstract:   (1185 Views)
Background: The clinical effect of photodynamic therapy (PDT) may be correlated with the degree of dysplasia of cancer tissues. The aim of this study was to compare the effects of cisplatin, silver nanoparticles (AgNps), and photodynamic therapy (PDT) using methylene blue (MB) photosensitizer on Head and Neck squamous cell carcinoma - cell line (HNSCC), Hep-2, through genes expression.

Methods: Hep-2 cells were divided into four groups: group I as control and without any treatment, group II and III were treated by cisplatin and AgNps, respectively, and group IV were incubated with MB for four minutes followed by PDT using laser irradiation at 650 nm for 8 minutes. The resulting toxicity was assessed in cell lines using MTT cytotoxicity assay. Further, apoptosis and the response to treatment was examined
via RT-qPCR.

Results: MB-PDT inhibited the proliferation of Hep-2 cells. Following PDT, compared with AgNps cells and via MTT assay, a highly significant decrease was observed in cell proliferation in Cancer cells treated with AgNps and MB- PDT groups compared to cancer group cells and cancer cells treated with Cisplatin
(p value< 0.001). Mechanistically, both the mRNA and protein expression levels of Bcl-2, Caspase-3, Cyclin-D, HIF-1, IL-8, MAPK-38, and ROS were found to be down regulated in Hep-2 cell line after MBPDT.

Conclusions: MB-PDT effectively killed Hep-2 cells in vitro, however, under the same conditions, the susceptibilities of the cell line to cisplatin, AgNps, and MB-PDT were different. Further studies are necessary to confirm whether this difference is present in clinical oral cancer lesions.
Full-Text [PDF 534 kb]   (607 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/11/5 | Accepted: 2021/11/14 | Published: 2022/08/7

1. Shi H, Peter J. Sadler. How promising is phototherapy for cancer?. British Journal of Cancer. 2020;123:871-873. [DOI:10.1038/s41416-020-0926-3] [PMID] [PMCID]
2. Tampa M, Sarbu M-I, Matei C, Mitran C-I, Mitran M-I, Caruntu C, et al. Photodynamic therapy: a hot topic in dermato-oncology. Oncol Lett. 2019;17(5):4085-4093. [DOI:10.3892/ol.2019.9939] [PMID] [PMCID]
3. Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5):e1560. [DOI:10.1002/wnan.1560] [PMID] [PMCID]
4. Jiashing Yu, Chih-Chia H, Po-Yang Ch. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl Mater Interfaces. 2014;14;7(1):432-41. [DOI:10.1021/am5064298] [PMID]
5. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. [DOI:10.1002/ijc.29210] [PMID]
6. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4-5):309-316. [DOI:10.1016/j.oraloncology.2008.06.002] [PMID]
7. Méry B, Rancoule Ch, Guy J, Espenel S, Wozny A, Battiston-Montagne P, et al. Preclinical models in HNSCC: a comprehensive review. Oral Oncol. 2017;65:51-56. [DOI:10.1016/j.oraloncology.2016.12.010] [PMID]
8. Drost J, Clevers H. Organoids in cancer research. nature reviews cancer. 2018;18:407-418. [DOI:10.1038/s41568-018-0007-6] [PMID]
9. Jerjes W, Upile T, Hamdoon Z, Mosse Ch, Akram S, Hopper C. Photodynamic therapy outcome for oral dysplasia. Lasers Surg Med. 2011;43(3):192-9. [DOI:10.1002/lsm.21036] [PMID]
10. Cerrati E W, Nguyen SA, Farrar JD, Lentsch EJ. The efficacy of photodynamic therapy in the treatment of oral squamous cell carcinoma: a meta-analysis. Ear Nose Throat J. 2015;94(2):72-9. [DOI:10.1177/014556131509400208] [PMID]
11. NakaokaT, A Ota, Ono T, KarnanS, Konishi H, FuruhashiA, et al. Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol (Dordr). 2014;37(2):119-29. [DOI:10.1007/s13402-014-0167-7] [PMID]
12. Latifa Mohamed Abdelgawad, Manar Mohy Abd El-hamed, Dina Sabry, Marwa Abdelgwad. Efficacy of Photobiomodulation and Metformin on Diabetic Cell Line of Human Periodontal Ligament Stem Cells through Keap1/Nrf2/Ho-1 Pathway. Rep Biochem Mol Biol. 2021;10(1):30-40. [DOI:10.52547/rbmb.10.1.30] [PMID] [PMCID]
13. Karamzadeh R, Eslaminejad MB, Aflatoonian R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. 2012;69:4372. [DOI:10.3791/4372] [PMID] [PMCID]
14. KoflerB, Romani A, Pritz Ch, Steinbichler TB, Hans Schartinger V, Riechelmann H, et al. Photodynamic Effect of Methylene Blue and Low-Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell. Int J Mol Sci. 2019;19(4):1107. [DOI:10.3390/ijms19041107] [PMID] [PMCID]
15. Schartinger V H, Galvan O, Riechelmann H, Dudas J. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer. 2012;20(3):523-9. [DOI:10.1007/s00520-011-1113-0] [PMID]
16. Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues MFSD, Moura-Netto C, Marques MM. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci. 2019;34(4):659-666. [DOI:10.1007/s10103-018-2637-z] [PMID]
17. Zhang N, Wu ZM, McGowan E, Shi J, Hong ZB, Ding CW at al. Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci. 2009;100(12):2459-64. [DOI:10.1111/j.1349-7006.2009.01340.x] [PMID]
18. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3(4):524-548. [DOI:10.1001/jamaoncol.2016.5688] [PMID] [PMCID]
19. Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med. 2013;6(1):1-10. [DOI:10.1016/S1995-7645(12)60193-X]
20. Sur I, Altunbek M, Kahraman M, Culha M. The influence of the sur¬face chemistry of silver nanoparticles on cell death. Nanotechnology. 2012;23(37):375102. [DOI:10.1088/0957-4484/23/37/375102] [PMID]
21. Hwang IS, Lee J, Hwang J, KJ Kim, DG Lee. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012;279(7):1327-38. [DOI:10.1111/j.1742-4658.2012.08527.x] [PMID]
22. Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, et al. Photodynamic and photo¬thermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J Am Chem Soc. 2012;134(43):17862-5. [DOI:10.1021/ja3079972] [PMID]
23. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, et al. Photodynamic therapy mechanisms photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. [DOI:10.1016/j.biopha.2018.07.049] [PMID]
24. Dos Santos AF, De Almeida DRQ, Terra LF, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treatment. 2019;5(25). [DOI:10.20517/2394-4722.2018.83]
25. Wagner M, Suarez ER, Theodoro TR, Machado F, Gama MF, Tardivo JP, et al. Methylene blue photodynamic therapy in malignant melanoma decreases expression of proliferating cell nuclear antigen and heparanases. Clin Exp Dermatol. 2012;37(5):527-33. [DOI:10.1111/j.1365-2230.2011.04291.x] [PMID]
26. Lim EJ, Oak CH, Heo J, Kim YH. Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncol. Rep. 2012;30(2):856-62. [DOI:10.3892/or.2013.2494] [PMID]
27. TJ Dougherty, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889-905. [DOI:10.1093/jnci/90.12.889] [PMID] [PMCID]
28. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro. 2013;27(1):330-8. [DOI:10.1016/j.tiv.2012.08.021] [PMID]
29. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012 12;31(15):1869-83.30. Zhu J, Carozzi VA, Reed N, Mi R, Marmiroli P, Cavaletti G, et al. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity. Sci Rep. 2016;6:28861. [DOI:10.1038/srep28861] [PMID] [PMCID]
30. Miao XP, Sun XN, Li QS, Cui LJ, Wang, XY, Zhuang GF, et al. Pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang ameliorate ulcerative colitis via regulating the MAPK s and NF‐κB pathways in dendritic cells. Clin Exp Pharmacol Physiol. 2019;46(1):48-55. [DOI:10.1111/1440-1681.13026] [PMID]
31. Tang MK, Zhou HY, Yam JW, Wong AS. c-Met overexpression contributes to the acquired apoptotic resistance of non-adherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia. 2010;12(2):128-38. [DOI:10.1593/neo.91438] [PMID] [PMCID]
32. Maccalli C, Parmiani G, Ferrone S. Immunomodulating and Immuno resistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy. Immunol Invest. 2017;46(3):221-238. [DOI:10.1080/08820139.2017.1280051] [PMID]
33. Linkov F, Lisovich A, Yurkovetsky Z, Marrangoni A, Velikokhatnaya L, Nolenet B, et al. Early detection of head and neck cancer. development of a novel screening tool using multiplexed immunobead-based biomarker profiling. Cancer Epidemiol Biomarkers Prev. 2007;16(1):102-7. [DOI:10.1158/1055-9965.EPI-06-0602] [PMID]
34. Hoffmann TK, Sonkoly E, Homey B, Scheckenbach K, Gwosdz Ch, Bas M, et al. Aberrant cytokine expression in serum of patients with adenoid cystic carcinoma and squamous cell carcinoma of the head and neck. Head Neck. 2007;29(5):472-8 [DOI:10.1002/hed.20533] [PMID]
35. Gokhale AS, Haddad RI, Cavacini LA, Wirth L, Weeks L, Hallar M, et al. Serum concentrations of interleukin-8, vascular endothelial growth factor, and epidermal growth factor receptor in patients with squamous cell cancer of the head and neck. Oral Oncol. 2005;41(1):70-6. [DOI:10.1016/j.oraloncology.2004.06.005] [PMID]
36. Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I, et al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci U S A. 2010;107(47):20477-82. [DOI:10.1073/pnas.1006646107] [PMID] [PMCID]
37. Michiels C, Tellier C, Feron O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim Biophys Acta. 2016;1866(1):76-86. [DOI:10.1016/j.bbcan.2016.06.004] [PMID]
38. Tieshan Y, Yao Q, Cao F, Liu Q, LiuB, Wang X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016:11:6679-6692. [DOI:10.2147/IJN.S109695] [PMID] [PMCID]
39. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 2016;36(4):439-445. [DOI:10.1038/onc.2016.225] [PMID] [PMCID]
40. Zhenyu Ji, Yang G, S, K Tkacz- Stachowska, Nesland JM, et al. Zhenhe Suo. Jahn M.Neslanda. QianPeng. Induction of hypoxia-inducible factor-1α overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Letters. 2006;244( 2):182-9. [DOI:10.1016/j.canlet.2005.12.010] [PMID]
41. Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer. 2007;6:24. [DOI:10.1186/1476-4598-6-24] [PMID] [PMCID]
42. Alao JP, Lam EW Ali S, Buluwela L, Bordogna W, Lockey P, et al. Histone deacetylase inhibitor trichostatin A represses estrogen receptor α-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res. 2004;10(23):8094-104. [DOI:10.1158/1078-0432.CCR-04-1023] [PMID]
43. Shahabinejad M, Zare R, Asadi Z, Mohajertehran F. LAMP3 (CD208) Expression in Squamous Cell Carcinoma and Epithelial Dysplasia of the Oral Cavity and Clinicopathological Characteristics of Unfavorable Prognosis. Rep Biochem Mol Biol. 2021;9(4):373-378. [DOI:10.52547/rbmb.9.4.373] [PMCID]
44. El-Sayed Ibrahim N, Morsy H, Abdelgwad M. The Comparative Effect of Nisin and Thioridazine as Potential Anticancer Agents on Hepatocellular Carcinoma. Rep Biochem Mol Biol. 2021;9(4):452-462. [DOI:10.52547/rbmb.9.4.452] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb