Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 190-199 | Back to browse issues page

XML Print

Department of Biochemistry & Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia & Center of Hypoxia & Oxidative Stress Studies, Department of Biochemistry & Molecular. Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
Abstract:   (1808 Views)
Background: Oxidative stress is defined as the condition in which balance between the synthesis and detoxification of reactive oxygen species in cells is disrupted. This research explored the effects of intermittent and prolonged fasting on malondialdehyde (MDA), carbonyl, reduced glutathione (GSH), and
specific activity of catalase as biomarkers for oxidative stress in hearts, brains, and kidneys of New Zealand White (NZW) rabbits.

Methods: Fifteen NZW rabbits were divided into control, intermittent fasting (IF), and prolonged fasting (PF) groups. The controls were fed ad lib. IF and PF groups were fasted for 16 and 40 hours, respectively, followed by eight hours of non-fasting, for six days and were sacrificed on the 7th day. One hundred mg of heart, brain, and kidney tissues were homogenized in 1 ml of phosphate-buffered saline. MDA, carbonyl, GSH, and catalase were analyzed by spectrophotometry. Data were analyzed using One-way ANOVA and post hoc test.

Results: In heart, MDA was significantly greater in the control than in the IF and PF groups. In brain, GSH was greater in the IF than in the PF and control groups. Also, in brain, catalase specific activity was significantly greater in the control than in the IF and PF groups. In kidney, catalase specific activity was
significantly less in the PF than in the control group. 

Conclusions: The effect of fasting on oxidative stress in various organs showed various responses, however fasting reduced oxidative stress based on MDA and GSH levels in the heart and brain, respectively.
Full-Text [PDF 351 kb]   (1060 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/11/14 | Accepted: 2021/11/21 | Published: 2022/08/7

1. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell. Longev. 2017;2017:8416763. [DOI:10.1155/2017/8416763] [PMID] [PMCID]
2. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30:11-26. [DOI:10.1007/s12291-014-0446-0] [PMID] [PMCID]
3. Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: Physiology and pathophysiology. Int J Mol Sci. 2013;14:6306-6344. [DOI:10.3390/ijms14036306] [PMID] [PMCID]
4. Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging-matters of the heart and mind. Int J Mol Sci. 2013;14(9):17897-17925. [DOI:10.3390/ijms140917897] [PMID] [PMCID]
5. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14):1144-70. [DOI:10.1089/ars.2015.6317] [PMID] [PMCID]
6. Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J Am Coll Cardiol. 2017;70(2):212-229. [DOI:10.1016/j.jacc.2017.05.035] [PMID] [PMCID]
7. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843. [DOI:10.1155/2019/5080843] [PMID] [PMCID]
8. Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2014;1838(1 Pt B):438-444. [DOI:10.1016/j.bbamem.2013.09.016] [PMID]
9. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201-205. [DOI:10.1124/jpet.116.237503] [PMID] [PMCID]
10. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Ped Nephrol. 2018;34(6):975-91. [DOI:10.1007/s00467-018-4005-4] [PMID]
11. Putri A, Thaha M. Role of oxidative stress on chronic kidney disease progression. Act Med Indo. 2014;46(3):244-52.
12. Balasubramanian S. Progression of chronic kidney disease: Mechanisms and interventions in retardation. Apollo Medicine. 2013;10(1):19-28. [DOI:10.1016/j.apme.2013.01.009]
13. Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharmaceut Des. 2009;15(26):3003-26. [DOI:10.2174/138161209789058110] [PMID]
14. Bales CW, Kraus WE. Caloric restriction: implications for human cardiometabolic health. J Cardiopulm Rehabil Prev. 2013;33(4):201-8. [DOI:10.1097/HCR.0b013e318295019e] [PMID] [PMCID]
15. De Cabo R, Cabello R, Rios M, Lopez-Lluch G, Ingram DK, Lane MA, et al. Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol. 2004;39(3):297-304. [DOI:10.1016/j.exger.2003.12.003] [PMID]
16. Sanvictores T, Casale J, Huecker MR. Physiology, Fasting. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534877/.
17. Welton S, Minty R, O'Driscoll T, Willms H, Poirier D, Madden S, et al. Intermittent fasting and weight loss: Systematic review. Can Fam Physician. 2020;66(2):117-125.
18. Pedroso JAB, Wasinski F, Donato J. Prolonged fasting induces long-lasting metabolic consequences in mice. J Nutr Biochem. 2020;84:108457. [DOI:10.1016/j.jnutbio.2020.108457] [PMID]
19. Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med. 2014;66:88-99. [DOI:10.1016/j.freeradbiomed.2013.05.037] [PMID] [PMCID]
20. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. [DOI:10.1016/j.arr.2016.10.005] [PMID] [PMCID]
21. De Toledo FW, Grundler F, Bergouignan A, Drinda S, Michalsen A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS One. 2019;14(1):e0209353. [DOI:10.1371/journal.pone.0209353] [PMID] [PMCID]
22. Hardiany NS, Sucitra, Paramita R. Profile of malondialdehyde (MDA) and catalase specific activity in plasma of elderly woman. Health Science Journal of Indonesia. 2019;10(2):132-136. [DOI:10.22435/hsji.v12i2.2239]
23. Hardiany NS, Mulyawan W, Wanandi SI. Correlation between oxidative stress and tumor grade in glioma cells from patients in jakarta. Medical Journal of Indonesia. 2012;21:122. [DOI:10.13181/mji.v21i3.492]
24. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide level using enzymatic recycling method. Nature Protocol. 2006;1(6):3159-65. [DOI:10.1038/nprot.2006.378] [PMID]
25. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol - Hear Circ Physiol. 2011;301(6):H2181-90. [DOI:10.1152/ajpheart.00554.2011] [PMID]
26. Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and oxidative stress. J Clin Med. 2017;6(2):22. [DOI:10.3390/jcm6020022] [PMID] [PMCID]
27. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837. [DOI:10.1155/2012/736837] [PMID] [PMCID]
28. Anson MR, Guo Z, de Cabo R, Lyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100(10):6216-20. [DOI:10.1073/pnas.1035720100] [PMID] [PMCID]
29. Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: A summary of available findings. Nutr J. 2011;10:107. [DOI:10.1186/1475-2891-10-107] [PMID] [PMCID]
30. Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: A review of human and animal trials. Am J Clin Nutr. 2007;86(1):7-13. [DOI:10.1093/ajcn/86.1.7] [PMID]
31. Hernández-Moreno D, Míguez M, Soler F, Pérez-López M. Influence of sex on biomarkers of oxidative stress in the kidney, lungs, and liver of rabbits after exposure to diazinon. Environ Sci Pollut Res Int. 2018;25(32):32458-32465. [DOI:10.1007/s11356-018-3258-6] [PMID]
32. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Geront. 2010;45(6):410-8. [DOI:10.1016/j.exger.2010.03.014] [PMID]
33. Stankovic M, Mladenovic D, Ninkovic M, Vucevic D, Radosavljevic T. Effects of caloric restriction on oxidative stress parameters. Gen Physiol Biophys. 2013;32(2):277-83. [DOI:10.4149/gpb_2013027] [PMID]
34. Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2014;33(2):79-97. [DOI:10.1002/mas.21381] [PMID]
35. Singh R, Manchanda S, Kaur T, Kumar S, Lakhanpal D, Lakhman SS, et al. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats. Biogerontology. 2015;16(6):775-88. [DOI:10.1007/s10522-015-9603-y] [PMID]
36. Chausse B, Vieira-Lara M, Sanchez A, Medeiros M, Kowaltowski A. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state. PLoS One. 2015;10(3):e0120413. [DOI:10.1371/journal.pone.0120413] [PMID] [PMCID]
37. Wilhelmi de Toledo F, Grundler F, Goutzourelas N, Tekos F, Vassi E, Mesnage R, et al. Influence of long- term fasting on blood redox status in humans. Antioxidants (Basel). 2020;9(6):496. [DOI:10.3390/antiox9060496] [PMID] [PMCID]
38. Flohe, L. Glutathione. Boca Raton, FL: CRC Press, Taylor & Francis Group.2019:3-24.
39. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of sirt1 in diabetic wistar fatty (fa/fa) Rats: A model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185. [DOI:10.1155/2011/908185] [PMID] [PMCID]
40. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120(4):1043-55. [DOI:10.1172/JCI41376] [PMID] [PMCID]
41. Vázquez-Medina JP, Crocker DE, Forman HJ, Ortiz RM. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups. J Exp Biol. 2010;213(14):2524-2530. [DOI:10.1242/jeb.041335] [PMID] [PMCID]
42. Burgos-Morón E, Abad-Jiménez Z, Marañón, Iannantuoni A, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 2019;8(9):1385. [DOI:10.3390/jcm8091385] [PMID] [PMCID]
43. Sorensen M, SAnsz A, Gómez J, Pamplona R, Otín MP, Barja G. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006;40(4):339-47. [DOI:10.1080/10715760500250182] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.