Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 216-223 | Back to browse issues page


XML Print


Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran & Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
Abstract:   (1781 Views)
Background: A group of transcription factors involved in several cellular processes like cell growth, proliferation, cell cycle, differentiation and apoptosis which are critical to the cell biology of cancer is Forkhead Box O (FOXO) family. FOXOs are known as putative tumor suppressors. FOXO1 is a member
of FOXO family which its abnormal expression or function has been indicated to promote cell proliferation and tumorigenesis. The probable effects of FOXO1 rs17592236 polymorphism on Papillary thyroid carcinoma (PTC) and its clinical findings were evaluated.

Methods: In total, 156 PTC patients and 158 healthy subjects were participated in the study. Genotyping of FOXO1 rs17592236 polymorphism was carried out using RFLP-PCR method. 

Results: There was no association between the FOXO1 rs17592236 polymorphism and PTC in codominant, recessive, dominant, overdominant, and log-additive models. The frequency of rs17592236A allele was 13% in PTC and 17% in control group and were not statistically significant (p= 0.15). The analysis of the relationship between FOXO1 rs17592236 polymorphism and clinical specifications of papillary thyroid carcinoma demonstrated no significant relationship between rs17592236 polymorphism and PTC in different ages (< 40 and≥ 40), gender (male/female), extrathyroidal expansion, N stage, vascular invasion and capsular invasion in PTC patients. There was a relationship between FOX1 rs17592236 polymorphism and a larger tumor size (≥ 1 cm) only in log-additive model (OR= 2.96, 95% CI= 0.88-9.98; p= 0.04).

Conclusions: FOXO1 rs17592236 polymorphism was not associated with PTC; however, this variant was associated with a larger tumor size (≥ 1 cm) only in log-additive model.
Full-Text [PDF 258 kb]   (1268 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/12/26 | Accepted: 2022/01/1 | Published: 2022/08/7

References
1. Seyed Abutorabi E, Irani S, Yaghmaie M, Ghaffari SH. Abemaciclib (CDK4/6 Inhibitor) Blockade Induces Cytotoxicity in Human Anaplastic Thyroid Carcinoma Cells. Rep Biochem Mol Biol. 2020;8(4):438-445.
2. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1-2):43-73. [DOI:10.1615/CritRevOncog.v18.i1-2.40] [PMID] [PMCID]
3. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133. [DOI:10.1089/thy.2015.0020] [PMID] [PMCID]
4. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci. 2019;16(3):450-460. [DOI:10.7150/ijms.29935] [PMID] [PMCID]
5. Liu Y, Su L, Xiao H. Review of factors related to the thyroid cancer epidemic. Int J Endocrinol. 2017;2017:5308635. [DOI:10.1155/2017/5308635] [PMID] [PMCID]
6. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer letters. 2013;328(2):198-206. [DOI:10.1016/j.canlet.2012.09.017] [PMID]
7. Hornsveld M, Smits LM, Meerlo M, Van Amersfoort M, Koerkamp MJG, van Leenen D, et al. FOXO transcription factors both suppress and support breast cancer progression. Cancer Res. 2018;78(9):2356-2369. [DOI:10.1158/0008-5472.CAN-17-2511] [PMID]
8. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017;13(7):815-827. [DOI:10.7150/ijbs.20052] [PMID] [PMCID]
9. Link W, Fernandez‐Marcos PJ. FOXO transcription factors at the interface of metabolism and cancer. Int J Cancer. 2017;141(12):2379-2391. [DOI:10.1002/ijc.30840] [PMID]
10. Jiramongkol Y, Lam EW-F. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020;39(3):681-709. [DOI:10.1007/s10555-020-09883-w] [PMID] [PMCID]
11. Zhao HH, Herrera RE, Coronado-Heinsohn E, Yang MC, Ludes-Meyers JH, Seybold-Tilson KJ, et al. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem. 2001;276(30):27907-12. [DOI:10.1074/jbc.M104278200] [PMID]
12. Li T, Wu X, Zhu X, Li J, Pan L, Li P, et al. Association analyses between the genetic polymorphisms of HNF4A and FOXO1 genes and Chinese Han patients with type 2 diabetes. Mol Cell Biochem. 2011;353(1-2):259-65. [DOI:10.1007/s11010-011-0794-5] [PMID]
13. Heidari Z, Mohammadpour‐Gharehbagh A, Eskandari M, Harati‐Sadegh M, Salimi S. Genetic polymorphisms of miRNA let7a‐2 and pri‐mir‐34b/c are associated with an increased risk of papillary thyroid carcinoma and clinical/pathological features. J Cell Biochem. 2018. [DOI:10.1002/jcb.28152] [PMID]
14. Maruei‐Milan R, Heidari Z, Salimi S. Role of MDM2 309T> G (rs2279744) and I/D (rs3730485) polymorphisms and haplotypes in risk of papillary thyroid carcinoma, tumor stage, tumor size, and early onset of tumor: A case control study. J Cell Physiol. 2019;234(8):12934-12940. [DOI:10.1002/jcp.27960] [PMID]
15. Beretta GL, Corno C, Zaffaroni N, Perego P. Role of FoxO proteins in cellular response to antitumor agents. Cancers (Basel). 2019;11(1):90. [DOI:10.3390/cancers11010090] [PMID] [PMCID]
16. Chae Y-C, Kim J-Y, Park JW, Kim K-B, Oh H, Lee K-H, et al. FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 2019;47(4):1692-1705. [DOI:10.1093/nar/gky1230] [PMID] [PMCID]
17. Yang L, Liu L, Zhang X, Zhu Y, Li L, Wang B, et al. Mir-96 enhances the proliferation of cervical cancer cells by targeting foxo1. Pathol Res Pract. 2020;216(4):152854. [DOI:10.1016/j.prp.2020.152854] [PMID]
18. Zhang L-Y, Chen Y, Jia J, Zhu X, He Y, Wu L-M. MiR-27a promotes EMT in ovarian cancer through active Wnt/?-catenin signalling by targeting FOXO1. Cancer Biomarkers. 2019;24(1):31-42. [DOI:10.3233/CBM-181229] [PMID]
19. Dong X-Y, Chen C, Sun X, Guo P, Vessella RL, Wang R-X, et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res. 2006;66(14):6998-7006. [DOI:10.1158/0008-5472.CAN-06-0411] [PMID]
20. Yang L, Hu HM, Zielinska-Kwiatkowska A, Chansky HA. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells. Biochem Biophys Res Commun. 2010;402(1):129-34. https://doi.org/10.1016/S0006-291X(05)80121-4 [DOI:10.1016/j.bbrc.2010.09.129]
21. Kojima T, Shimazui T, Horie R, Hinotsu S, Oikawa T, Kawai K, et al. FOXO1 and TCF7L2 genes involved in metastasis and poor prognosis in clear cell renal cell carcinoma. Genes Chromosomes Cancer. 2010;49(4):379-89. [DOI:10.1002/gcc.20750] [PMID]
22. Tan C, Liu S, Tan S, Zeng X, Yu H, Li A, et al. Polymorphisms in microRNA target sites of forkhead box O genes are associated with hepatocellular carcinoma. PLoS One. 2015;10(3):e0119210. [DOI:10.1371/journal.pone.0119210] [PMID] [PMCID]
23. Yan H, Li Q, Wu J, Hu W, Jiang J, Shi L, et al. MiR-629 promotes human pancreatic cancer progression by targeting FOXO3. Cell Death & Disease. 2017;8(10):e3154. [DOI:10.1038/cddis.2017.525] [PMID] [PMCID]
24. Yang X, Wu X, Fang N, Liu X, Liu X, Yang L, et al. FOXO3 gene polymorphisms influence the risk of acute lymphoblastic leukemia in Chinese children. J Cell Biochem. 2020;121(2):2019-2026. [DOI:10.1002/jcb.29436] [PMID]
25. Wang Y, Zhou L, Chen J, Li J, He L, Wu P, et al. Association of the 3'UTR FOXO3a polymorphism rs4946936 with an increased risk of childhood acute lymphoblastic leukemia in a Chinese population. Cell Physiol Biochem. 2014;34(2):325-32. [DOI:10.1159/000363002] [PMID]
26. Campa D, Husing A, Dostal L, Stein A, Drogan D, Boeing H, et al. Genetic variability of the forkhead box O3 and prostate cancer risk in the European Prospective Investigation on Cancer. Oncol Rep. 2011;26(4):979-86.
27. Zhao Y, Wei J, Hou X, Liu H, Guo F, Zhou Y, et al. SIRT1 rs10823108 and FOXO1 rs17446614 responsible for genetic susceptibility to diabetic nephropathy. Sci Rep. 2017;7:10285. [DOI:10.1038/s41598-017-10612-7] [PMID] [PMCID]
28. Li T, Wu X, Zhu X, Li J, Pan L, Li P, et al. Association analyses between the genetic polymorphisms of HNF4A and FOXO1 genes and Chinese Han patients with type 2 diabetes. Mol Cell Biochem. 2011;353(1-2):259-65. [DOI:10.1007/s11010-011-0794-5] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.