Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 299-309 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ali H H, Al-rawi K, Khalaf Y, Alaaraji S, Aldahham B, Awad M, et al . Serum Caveolin-1 Level is Inversely Associated with Serum Vaspin, Visfatin, and HbA1c in Newly Diagnosed Men with Type-2 Diabetes. rbmb.net 2022; 11 (2) :299-309
URL: http://rbmb.net/article-1-874-en.html
University of Al-Rasheed College, Baghdad, Iraq
Abstract:   (1134 Views)
Background: The fluctuation in serum caveolin-1 (Cav-1) concentrations is an important indicator of many diseases. Irrespective of the actual cause, a significant reduction of serum Cav-1 is associated with a significant increase in insulin secretion and hyperinsulinemia. The aim of the current study was to evaluate the relationship between serum Cav-1, serum vaspin and visfatin in newly diagnosed men with T2DM.

Methods: Eighty-two newly diagnosed men with T2DM were matched for age and body mass indexes (BMIs) with a similar number of non-diabetic men. Serum Cav-1, vaspin and visfatin were assessed through enzyme-linked immunosorbent assay. Fasting serum glucose (FSG), glycohaemoglobin A1C (HbA1c) were both measured using automated method. In addition, waist-circumferences, waist-hip ratio, systolic (SBP), and diastolic blood pressure (DBP) were also obtained.

Results: Serum concentration of Cav-1(ng/mL) was significantly low in men newly diagnosed with T2DM, (2.334±0.7627) compared with non-diabetic controls (4.321±1.143), p< 0.0001. In contrast, patients with T2DM exhibited significantly higher serum concentrations of vaspin and visfatin (ng/mL), 142.4±60.53) and 2.99±1.091), than controls, 81.53±39.32) and 1.456±0.654), respectively, p< 0.0001. Expectedly, patients with T2DM have significantly higher FSG, HbA1c, systolic blood pressure (SBP), and diastolic blood pressure (DBP). 

Conclusions: There was an inverse significant relationship between Cav-1 and vaspin, visfatin, HbA1c, FSG, and hypertension. This study suggests that serum Cav-1 can be used as a diagnostic marker to predict T2DM in individuals and families under high risk.
Full-Text [PDF 288 kb]   (430 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2022/02/10 | Accepted: 2022/02/20 | Published: 2022/08/7

1. Mottalib A, Kasetty M, Mar JY, Elseaidy T, Ashrafzadeh S, Hamdy O. Weight management in patients with type 1 diabetes and obesity. Curr Diab Rep. 2017;17(10):92. [DOI:10.1007/s11892-017-0918-8] [PMID] [PMCID]
2. Ziqi T, Shi A, Zhao J. Epidemiological perspective of diabetes. Cell Biochem Biophys. 2015;73(1):181-5. [DOI:10.1007/s12013-015-0598-4] [PMID]
3. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes related complications. Phys Ther. 2008;88(11):1254-64. [DOI:10.2522/ptj.20080020] [PMID] [PMCID]
4. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice. 2014;105(2): 141-50. [DOI:10.1016/j.diabres.2014.04.006] [PMID]
5. Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Investig. 2006;116:1802-1812. [DOI:10.1172/JCI29103] [PMID] [PMCID]
6. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe K B, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. [DOI:10.3390/ijms21176275] [PMID] [PMCID]
7. Sushith S, Krishnamurthy HN, Reshma S, Janice D'Sa, Madan G, Ashok KJ, et al. Serum ischemia-modified albumin, fibrinogen, high sensitivity C-reactive proteins in type-2 diabtesmellitus without hypertension and diabetes mellitus with hypertension: a case control study. Rep Biochem Mol Biol. 2020;9(2):241-249. [DOI:10.29252/rbmb.9.2.241] [PMID] [PMCID]
8. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426-430. [DOI:10.1126/science.1097243] [PMID]
9. Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA. 2005;102(30):10610-10615. [DOI:10.1073/pnas.0504703102] [PMID] [PMCID]
10. El-Mesallamy HO, Kassem DH, El-Demerdash E, Amin AI. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2diabetes mellitus. Metabolism. 2011;60(1):63-70. [DOI:10.1016/j.metabol.2010.04.008] [PMID]
11. Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ, et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006;91(1):295-9. [DOI:10.1210/jc.2005-1475] [PMID]
12. Lo'pez-Bermejo A, Chico-Julia B, Ferna'ndez-Balsells M, Recasens M, Esteve E, Casamitjana R, et al. Serum visfatin increases with Progressive β-cell deterioration. Diabetes. 2006;55(10):2872-5. [DOI:10.2337/db06-0259] [PMID]
13. Dimova R, Tankova T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. Biomed Res Int. 2015;2015:823481. [DOI:10.1155/2015/823481] [PMID] [PMCID]
14. Esteghamati A, Noshad S, Mousavizadeh M, Zandieh A, Nakhjavani M. Response: association of vaspin with metabolic syndrome: the pivotal role of insulin resistance (diabetes metab j 2014;38:143-9). Diabetes Metab J. 2014;38(3):242-3. [DOI:10.4093/dmj.2014.38.3.242] [PMID] [PMCID]
15. Kuo A, Lee MY, Yang Kui, Gross RW, Sessa WC, et al. Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis. J Biol Chem. 2018;293(3):973-983. [DOI:10.1074/jbc.RA117.000980] [PMID] [PMCID]
16. Fernandez-Rojo MA, Gongora M, Fitzsimmons RL. Caveolin-1 is necessary for hepatic oxidative lipid metabolism: evidence for crosstalk between caveolin-1 and bile acid signaling. Cell Rep. 2013;4(2):238-47. [DOI:10.1016/j.celrep.2013.06.017] [PMID]
17. Schwencke C, Braun-Dullaeus RC,Wunderlich C, Strasser RH. Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res. 2006;70(1):42-9. [DOI:10.1016/j.cardiores.2005.11.029] [PMID]
18. Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech Ageing Dev. 2011:132(11-12):533-542. [DOI:10.1016/j.mad.2011.11.001] [PMID] [PMCID]
19. Nunez-Wehinger S, Ortiz RJ, Diaz N, Diaz J, Lobos-Gonzalez L, Quest AFG. Caveolin-1 in cell migration and metastasis. Current Molecular Medicine. 2014;14(2). [DOI:10.2174/1566524014666140128112827] [PMID]
20. Morgan CL, Currie CJ, Peters JR. Relationship between diabetes and mortality: a population study using record linkage. Diabetes Care. 2000;23(8):1103-1107. [DOI:10.2337/diacare.23.8.1103] [PMID]
21. Leighton E, Sainsbury C, Jones GC. A practical review of C-peptide testing in diabetes. Diabetes Ther. 2017;8(3):475-487. [DOI:10.1007/s13300-017-0265-4] [PMID] [PMCID]
22. Urzúa PL, Murillo ON, Castro-Sepúlveda M, Torres-Quintana MA, Caldera AL, Quest AFG, et al. Loss of Caveolin-1 is associated with a decrease in beta cell death in mice on a high fat diet. Int J Mol Sci. 2020,21(15):5225. [DOI:10.3390/ijms21155225] [PMID] [PMCID]
23. Zeng W, Tang J, Li H, Xu H, Lu H, Peng H, et al. Caveolin-1 deficiency protects pancreatic β-cells against palmitate-induced dysfunction and apoptosis. Cell Signal. 2018;47:65-78. https://doi.org/10.1016/j.cellsig.2018.03.013 [DOI:10.1016/j.cellsig.2018.08.015] [PMID]
24. Li M, Chen D, Huang H, Wang J, Wan X, Xu C, et al. Caveolin1 protects against diet induced hepatic lipid accumulation in mice. PLoS ONE. 2017;12(6):e0178748. [DOI:10.1371/journal.pone.0178748] [PMID] [PMCID]
25. Han M, Nwosu ZC, Pioronska W, Ebert MP, Dooley S, Meyer C. Caveolin-1 impacts on TGF-β regulation of metabolic gene signatures in hepatocytes. Front Physiol. 2019;10:1606. [DOI:10.3389/fphys.2019.01606] [PMID] [PMCID]
26. Ali AT, Ferris WF, Naran NH, Crowther NJ. Insulin resistance in the control of body fat distribution: a new hypothesis. Horm Metab Res. 2011;43(2):77-80. [DOI:10.1055/s-0030-1269851] [PMID]
27. Dhawan S, Dirice E, Kulkarni RN, Bhushan A. Inhibition of TGF-β signaling promotes human pancreatic β-cell replication. Diabetes. 2016;65(5):1208-1218. [DOI:10.2337/db15-1331] [PMID] [PMCID]
28. Cohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE, et al. Caveolin-1 deficinet mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol. 2003;285(1):C222-35. [DOI:10.1152/ajpcell.00006.2003] [PMID]
29. Kim CA, Delépine D, Boutet E, El-Mourabit H, Lay SL, Meier M, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129-1134. [DOI:10.1210/jc.2007-1328] [PMID]
30. Klöting N, Berndt J, Kralisch S, Kovacs P, Fasshauer M, Schӧn MR, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun. 2006;339(1):430-436. [DOI:10.1016/j.bbrc.2005.11.039] [PMID]
31. Kobat MA, Celik A, Balin M, Altas Y, Baydas A, Bulut M, et al. The investigation of serum vaspin level in atherosclerotic coronary artery disease. J Clin Med Res. 2012;4(2):110-113. [DOI:10.4021/jocmr841w] [PMID] [PMCID]
32. Youn B-S, Klöting N, Kratzsch J, Lee N, Park JW, Song E-S, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes. 2008;57(2):372-377. [DOI:10.2337/db07-1045] [PMID]
33. Yang H, Huang Y, Gai C, Chai G, Lee S. Serum vaspin levels are positively associated with diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes Investig. 2021;12(4):566-573. [DOI:10.1111/jdi.13385] [PMID] [PMCID]
34. Yki-Jarvinen H. Glucose toxicity. Endocr Rev. 1992;13(3):415-31. https://doi.org/10.1210/edrv-13-3-415 [DOI:10.1210/er.13.3.415] [PMID]
35. de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, et al. Diabetes and Hypertension: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273-1284. [DOI:10.2337/dci17-0026] [PMID]
36. Lebovitz HE. Insulin: potential negative consequences of early routine use in patients with type 2diabetes. Diabetes Care. 2011;34(Suppl 2): S225-S230. [DOI:10.2337/dc11-s225] [PMID] [PMCID]
37. Nordwall M, Abrahamsson M, Dhir M, Fredrikson M, Ludvigsson J, Arnqvist HJ. Impact of HbA1c, followed from onset of type 1 diabetes, on the development of severe retinopathy and nephropathy: The VISS Study (Vascular Diabetic Complications in Southeast Sweden). Diabetes Care. 2015;38(2):308-315. [DOI:10.2337/dc14-1203] [PMID]
38. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak l, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317(2):165-182. [DOI:10.1001/jama.2016.19043] [PMID]
39. Arauz-Pacheco C, Parrott M A, Raskin Ph The treatment of hypertension in adult patients with diabetes. Diabetes Care. 2002;25(1):134-47. [DOI:10.2337/diacare.25.1.134] [PMID]
40. Al-rawi KF, Ali HH, Guma MA, Mohammed Aldahham BJ, Tuleab Alaaraji SF, Al-ani O, et al. Relationship between IL-2, IL-17concentrations and serum creatinine levels in men with chronic kidney disease. Reports of Biochemistry and Molecular Biology. 2022;10(4):664-674. [DOI:10.52547/rbmb.10.4.664] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb