Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 350-357 | Back to browse issues page


XML Print


Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Abstract:   (2133 Views)
Background: Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. Elevated low-density lipoprotein-cholesterol (LDL-C) and more specifically, elevation of its small, dense phenotype (sdLDL-C) has been regarded as the key modifiable risk factors associated with atherogenesis. This study aimed to determine the association of LDL-C and sdLDL-C with the development of CVDs in the next six months to establish their predictive efficacy.
 
Methods: A batch of 162 anonymized serum samples sent for analysis of lipid profile parameters, were classified into tests and controls based on the calculated LDL-C values obtained by Fried Ewald formula. Direct LDL-C was also estimated automatically using assay kits. Using the formula provided by Srisawasdi et al., sdLDL-C was then computed for all samples. Six months later, samples were deanonymized, and the lipid profiles were compared with cardiovascular outcomes of these patients, to determine which parameter
had the greatest correlation.
 
Results: Four control group patients and three test group patients developed the outcome (any cardiovascular event) during the 6-month follow-up period. Binary logistic regression analysis showed that none of the lipid profile parameters: calculated LDL-C (OR= 0.99; 95% CI= 0.97-1.01; p= 0.826), direct LDL-C (OR= 0.99; 95% CI= 0.97-1.01; p= 0.818) or sdLDL-C (OR= 0.99; 95% CI= 0.93-1.04; p= 0.734), were significantly associated with the occurrence of outcome. The median % sdLDL-C both with respect to direct and calculated LDL-C was slightly higher in patients with the outcome.
 
Conclusions: The levels of LDL-C or its individual phenotypes may not be used singly as indicator of cardiovascular morbidity in the next six months.
Full-Text [PDF 242 kb]   (1421 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2022/03/29 | Accepted: 2022/03/29 | Published: 2022/08/7

References
1. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43(9):1363-79. [DOI:10.1194/jlr.R200004-JLR200] [PMID]
2. Sialvera TE, Papadopoulou A, Efstathiou SP, Trautwein EA, Ras RT, Kollia N, et al. Structured advice provided by a dietitian increases adherence of consumers to diet and lifestyle changes and lowers blood low-density lipoprotein (LDL)-cholesterol: the Increasing Adherence of Consumers to Diet & Lifestyle Changes to Lower (LDL) Cholesterol (ACT) randomised controlled trial. J Hum Nutr Diet. 2018;31(2):197-208. [DOI:10.1111/jhn.12508] [PMID]
3. Hernáez Á, Soria-Florido MT, Schröder H, Ros E, Pintó X, Estruch R, et al. Role of HDL function and LDL atherogenicity on cardiovascular risk: A comprehensive examination. PLoS ONE. 2019;14(6):e0218533. [DOI:10.1371/journal.pone.0218533] [PMID] [PMCID]
4. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982;23(1):97-104. [DOI:10.1016/S0022-2275(20)38178-5]
5. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495-506. [DOI:10.1161/01.CIR.82.2.495] [PMID]
6. Cleeman JI. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486-97. [DOI:10.1001/jama.285.19.2486] [PMID]
7. St-Pierre AC, Cantin B, Dagenais GR, Mauriège P, Bernard PM, Després JP, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 2005;25(3):553-9. [DOI:10.1161/01.ATV.0000154144.73236.f4] [PMID]
8. Carmena R, Duriez P, Fruchart JC. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III2-7. [DOI:10.1161/01.CIR.0000131511.50734.44] [PMID]
9. Arsenault BJ, Lemieux I, Després JP, Wareham NJ, Luben R, Kastelein JJP, et al. Cholesterol levels in small LDL particles predict the risk of coronary heart disease in the EPIC-Norfolk prospective population study. Eur Heart J. 2007;28(22):2770-7. [DOI:10.1093/eurheartj/ehm390] [PMID]
10. Rizzo M, Berneis K. An update on the role of the quality of LDL in cardiovascular risk: the contribution of the universities of Palermo and Zurich. Recent Pat Cardiovasc Drug Discov. 2007;2(2):85-8. [DOI:10.2174/157489007780832489] [PMID]
11. Nanda R, Panda S, Mangaraj M. Small dense low-density lipoprotein cholesterol - the atherogenic molecule. Int J Health Sci Res. 2015; 5(6):598-607.
12. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502. [DOI:10.1093/clinchem/18.6.499] [PMID]
13. Lindsey CC, Graham MR, Johnston TP, Kiroff CG, Freshley A. A Clinical Comparison of Calculated versus Direct Measurement of Low-Density Lipoprotein Cholesterol Level. Pharmacotherapy. 2004;24(2):167-72. [DOI:10.1592/phco.24.2.167.33142] [PMID]
14. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid Med Cell Longev. 2017;2017:1273042. [DOI:10.1155/2017/1273042] [PMID] [PMCID]
15. Tsai MY, Steffen BT, Guan W, McClelland RL, Warnick R, McConnell J, et al. New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: The multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(1):196-201. [DOI:10.1161/ATVBAHA.113.302401] [PMID] [PMCID]
16. Srisawasdi P, Chaloeysup S, Teerajetgul Y, Pocathikorn A, Sukasem C, Vanavanan S, et al. Estimation of plasma small dense LDL cholesterol from classic lipid measures. Am J Clin Pathol. 2011;136(1):20-9. [DOI:10.1309/AJCPLHJBGG9L3ILS] [PMID]
17. Palazhy S, Kamath P. Estimation of Small, Dense LDL Particles Using Equations Derived from Routine Lipid Parameters as Surrogate Markers. Biochemistry & Analytical Biochemistry. 2014;3(1):1-5. [DOI:10.4172/2161-1009.1000146]
18. Gulati A, Sreenivas C, Talwalkar P, Baxi H. Journey in guidelines for lipid management: From adult treatment panel (ATP)-I to ATP-III and what to expect in ATP-IV. Indian J Endocrinol Metab. 2013;17(4):628-35. [DOI:10.4103/2230-8210.113753] [PMID] [PMCID]
19. Gupta S, Bhise M, Gaurav K, Gudapati R. Emerging risk factors for cardiovascular diseases: Indian context. Indian J Endocrinol Metab. 2013;17(5):806-14. [DOI:10.4103/2230-8210.117212] [PMID] [PMCID]
20. Sachdeva A, Cannon CP, Deedwania PC, LaBresh KA, Smith SC, Dai D, et al. Lipid levels in patients hospitalized with coronary artery disease: An analysis of 136,905 hospitalizations in Get with The Guidelines. Am Heart J. 2009;157(1):111-117. [DOI:10.1016/j.ahj.2008.08.010] [PMID]
21. Patil R, Raghu T, Manjunath C, Ghosh S, Shetty L. Distribution of conventional lipids in Indians with premature coronary artery disease: A substudy of the premature coronary artery disease registry. Journal of Clinical and Preventive Cardiology. 2019;8(1):18-24. [DOI:10.4103/JCPC.JCPC_33_18]
22. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34(5):1069-77. [DOI:10.1161/ATVBAHA.114.303284] [PMID] [PMCID]
23. Gerber PA, Nikolic D, Rizzo M. Small, dense LDL: An update. Curr Opin Cardiol. 2017;32(4):454-459. [DOI:10.1097/HCO.0000000000000410] [PMID]
24. Goel PK, Ashfaq F, Khanna R, Ramesh V, Pandey CM. The Association Between Small Dense Low-Density Lipoprotein and Coronary Artery Disease in North Indian Patients. Indian J Clin Biochem. 2017;32(2):186-92. [DOI:10.1007/s12291-016-0592-7] [PMID] [PMCID]
25. Kannan S, Mahadevan S, Ramji B, Jayapaul M, Kumaravel V. LDL-cholesterol: Friedewald calculated versus direct measurement-study from a large Indian laboratory database. Indian J Endocrinol Metab. 2014;18(4):502-4. [DOI:10.4103/2230-8210.137496] [PMID] [PMCID]
26. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Statins: pros and cons. Med Clin (Barc). 2018;150(10):398-402. [DOI:10.1016/j.medcli.2017.11.030] [PMID] [PMCID]
27. Menon AS, Kotwal N, Singh Y, Girish R. Statins: Cholesterol guidelines and Indian perspective. Indian J Endocrinol Metab. 2015;19(5):546-553. [DOI:10.4103/2230-8210.163105] [PMID] [PMCID]
28. Fonarow GC, Horwich TB. Cholesterol and mortality in heart failure: the bad gone good? J Am Coll Cardiol. 2003;42(11):1941-3. [DOI:10.1016/j.jacc.2003.09.005] [PMID]
29. Malati T. Whether western normative laboratory values used for clinical diagnosis are applicable to Indian population? An overview on reference interval. Indian J Clin Biochem. 2009;24(2):111-122. [DOI:10.1007/s12291-009-0022-1] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.