Search published articles


Showing 3 results for Kit

Maryam Rahimi, Farkhondeh Behjati, Hamid Reza Khorram Khorshid, Masoud Karimlou, Elahe Keyhani,
Volume 9, Issue 1 (5-2020)
Abstract

Background: KIT is a protooncogene that encodes for the KIT oncoprotein, which is a transmembrane tyrosine kinase growth factor receptor that holds a critical role in a variety of normal physiological and pathological processes including angiogenesis. KIT has been shown to be involved in tumorigenesis, contributing to the development of gastrointestinal carcinoma and leukemia. A link between KIT overexpression and breast cancer development has previously been reported. In the current study, we explored KIT gene expression and exonic copy number variants (CNV) and the relationship with angiogenesis (CD34) and the clinicopathological features of breast cancer.

Methods: MLPA technique was used to determine the CNV in 64 breast cancer tumor samples from patients diagnosed with primary sporadic breast cancer. Results were confirmed by quantitative PCR. Expression of KIT and CD34 was determined using immunohistochemistry (IHC).

Results: Our results show that 28.1% of the tumor samples from patients with primary sporadic breast cancer had CNV in the KIT gene. Among the breast tumor samples, 54.7% showed positive KIT expression. The expression of the CD34 angiogenesis marker was reported in 43.8% of the tumor samples as low, 42.2% as moderate and 14.1% as high. A significant correlation between increased CNV of KIT exons, a high level of angiogenesis (CD34) and increased tumor grade was observed (p< 0.05). 

Conclusions: A significant correlation between the KIT CNV and the angiogenesis marker was found. Examining KIT expression and CNV has the potential to function as a biomarker for tyrosine kinase inhibitor drugs in breast cancer.

Pantea Mohammadi, Mina Zangeneh, Hamid-Reza Mohammadi-Motlagh, Fatemeh Khademi,
Volume 9, Issue 3 (10-2020)
Abstract

Background: Non-Hodgkin’s lymphomas comprise the most common hematological cancers worldwide and consist of a heterogenous group of malignancies affecting the lymphoid system. Treatment of non-Hodgkin’s lymphoma has been significantly enhanced with the addition of Rituximab to the standard chemotherapy regimen. However, even with the advancement of treatment patients continue to relapse and develop resistance to Rituximab, rendering subsequent treatments unsuccessful. The use of novel drugs with unique antitumor mechanisms has gained considerable attention. In this study, we explored the in vitro anti-cancer effects of the combined therapy of Rituximab and Nisin on human Burkitt’s lymphoma cells.

Methods: The human Burkitt’s lymphoma cells lines, Raji and Daudi, were treated with Nisin, Rituximab, or a combination of the two agents at various concentrations. Cytotoxicity following treatment was determined using cell viability assay. The degree of apoptosis was verified via flow cytometric analysis using FITC annexin V/PI staining.

Results: Our findings show that the combined treatment of Rituximab and Nisin results in a more significant reduction in the survival of Raji and Daudi Burkitt’s lymphoma cells, compared to Nisin or Rituximab treatment alone. Additionally, our results indicate that Nisin can induce a significant degree of apoptosis in the Burkitt’s lymphoma cells compared to the negative controls. However, the addition of Nisin to the Rituximab treatment synergistically enhances the apoptotic antitumor effect.

Conclusions: This study demonstrates the synergistic antitumor effect of Nisin treatment in vitro to enhance tumor cell apoptosis and the potential value of Nisin as an adjunct therapy in the treatment of lymphoma.

Zhaoyang Fan, Liangying Zhang, Shaoting Zhang, Anbu Liu, Shujing Li, Xu Cao, Jinhai Tian, Sien Zhao, Jianmin Sun,
Volume 12, Issue 1 (4-2023)
Abstract

Background: Mutations in the receptor tyrosine kinase KIT are the major cause of gastrointestinal stromal tumors. KIT-mediated activation of the RAS/RAF/MEK/ERK and PI3 kinase/AKT pathways plays an important role in KIT mutant-mediated cell transformation.

Methods: The frequently seen primary KIT mutations W557K558del and V560D, and the secondary KIT mutations V654A and N822K, in gastrointestinal stromal tumors were stably transfected into Ba/F3 cells. Cell proliferation was examined with a CCK kit, and cell survival and cell cycle were examined by flow cytometry. Cell signaling was examined by western blot.

Results: We found that farnesyltransferase inhibitors tipifarnib and lonafarnib, which inhibit RAS activity, inhibited ERK activation mediated by both wild-type and KIT mutants, which often occur in gastrointestinal stromal tumors. Correspondingly, both wild-type and KIT mutant-mediated cell survival and proliferation were inhibited by both inhibitors. Imatinib is used as the first-line targeted therapy for gastrointestinal stromal tumors in the clinic. In our study, both inhibitors increased imatinib-mediated inhibition of cell survival and proliferation induced by both wild-type and KIT mutants. Similar to the primary KIT mutations, secondary mutations of KIT-induced ERK activation and cell response were inhibited by both inhibitors.

Conclusions: Our results suggested the potential benefit of farnesyltransferase inhibitors either alone or combined with imatinib in the treatment of gastrointestinal stromal tumors carrying KIT mutations.


Page 1 from 1     

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb