Vol.12 No.4 Jan                   Back to the articles list | Back to browse issues page

XML Print


Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
Abstract:   (331 Views)
Background: Multiple Sclerosis (MS) is a prevalent non-traumatic disabling disease affecting young adults, characterized by complexity in its pathogenesis. Nuclear factor erythroid 2-Related Factor 2 (NRF2) serves as a crucial transcriptional regulator of anti-inflammatory and antioxidant enzymes, influenced by the ubiquitous protein p62. It acts as a scaffold directing substrates to autophagosomes. This study aims to explore the potential association between microRNA 135-5p and p62 and their impact on inflammation and oxidative stress through the NRF2 pathway in MS.

Methods: The study included 30 healthy controls and 60 MS patients (relapsing-remitting and secondary progressive). Real-time PCR was employed for the detection of Nrf2, p62, miRNA135-5P, and NF-κB in serum, while p53 levels were determined using ELISA.

Results: Nrf2 and p62 expression was significantly downregulated in the MS group compared to controls. Conversely, miRNA135-5P, NF-κB expression, and P53 levels were significantly elevated in the MS group.

Conclusion: This study reveals a potential association between miRNA 135-5p and p62, indicating their role in the pathogenesis of MS. Results suggest that miRNA 135-5p and p62 may influence inflammation and oxidative stress in MS through the NRF2 pathway, potentially mediated by NF-κB and p53.

Full-Text [PDF 345 kb]   (86 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/06/6 | Accepted: 2023/09/30

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb