Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 540-549 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudivar S, Zarredar H, Asadi M, Zafari V, Hashemzadeh S, Farzaneh R et al . Serum miR-23 and miR-150 Profiles as Biomarkers for Predicting Recurrence following Surgical Intervention in Colorectal Cancer Patients. rbmb.net 2024; 12 (4) :540-549
URL: http://rbmb.net/article-1-1307-en.html
Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Abstract:   (1096 Views)
Background: MicroRNAs (miRNAs) play pivotal roles in post-transcriptional regulation of gene expression and have emerged as crucial regulators in cancer development, progression, and metastasis. This study aimed to assess the expression profiles of miR-23, miR-223, miR-1246, and miR-150 in serum samples obtained from colorectal cancer (CRC) patients before and three months after surgery, in comparison to a healthy control group, to explore their biomarker potential.

Methods: A total of 50 blood samples were collected from patients with CRC (pre- and post-surgery), along with 50 samples from healthy controls. The relative expression levels of miR-23, miR-223, miR-1246, and miR-150 in the serum were quantified using quantitative real-time PCR.

Results: Our findings revealed upregulated expression levels of miR-23, miR-1246, and miR-223, while miR-150 exhibited significant downregulation in the serum of CRC subjects compared to healthy controls. Receiver operating characteristic (ROC) analysis indicated that miR-23 and miR-150 could distinguish CRC cases from controls with relatively high accuracy. Moreover, three months post-surgery, miR-23, miR-1246, and miR-223 serum levels were downregulated, and miR-150 was significantly upregulated. However, no significant correlations were observed between serum levels of the studied genes and the clinical features of our patients.

Conclusions: The serum levels of miR-23 and miR-150 hold promise as potential biomarkers for the diagnosis and prognosis of CRC.
Full-Text [PDF 295 kb]   (249 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/12/18 | Accepted: 2024/02/26 | Published: 2024/07/2

References
1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145-64. [DOI:10.3322/caac.21601] [PMID]
2. Walsh JM, Terdiman JP. Colorectal cancer screening: scientific review. JAMA. 2003;289(10):1288-96. [DOI:10.1001/jama.289.10.1288] [PMID]
3. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89-103. [DOI:10.5114/pg.2018.81072] [PMID] []
4. Kamran S, Seyedrezazadeh E, Shanehbandi D, Asadi M, Zafari V, Shekari N, et al. Combination Therapy with KRAS and P38α siRNA Suppresses Colorectal Cancer Growth and Development in SW480 Cell Line. J Gastrointest Cancer. 2022;53(3):597-604. [DOI:10.1007/s12029-021-00667-1] [PMID]
5. Hewitson P, Glasziou P, Irwig L, Towler B, Watson E. Screening for colorectal cancer using the faecal occult blood test, Hemoccult. Cochrane Database Syst Rev. 2007;2007(1):CD001216. [DOI:10.1002/14651858.CD001216.pub2] [PMID] []
6. Zarredar H, Farajnia S, Ansarin K, Baradaran B, Aria M, Asadi M. Synergistic Effect of Novel EGFR Inhibitor AZD8931 and p38α siRNA in Lung Adenocarcinoma Cancer Cells. Anticancer Agents Med Chem. 2019;19(5):638-644. [DOI:10.2174/1871520619666190301125203] [PMID]
7. Shanehbandi D, Asadi M, Seyedrezazadeh E, Zafari V, Shekari N, Akbari M, et al. MicroRNA-Based Biomarkers in Lung Cancer: Recent Advances and Potential Applications. Curr Mol Med. 2023;23(7):648-667. [DOI:10.2174/2772432817666220520085719] [PMID]
8. Ahmadi A, Bayatiani MR, Seif F, Ansari J, Rashidi P, Moghadasi M, Etemadi M. Evaluation of Radiotherapy on miR-374 Gene Expression in Colorectal Cancer Patient Blood Samples. Rep Biochem Mol Biol. 2022;10(4):614-621. [DOI:10.52547/rbmb.10.4.614] [PMID] []
9. Bayatiani MR, Ahmadi A, Aghabozorgi R, Seif F. Concomitant Up-Regulation of Hsa- Mir-374 and Down-Regulation of Its Targets, GSK-3β and APC, in Tissue Samples of Colorectal Cancer. Rep Biochem Mol Biol. 2021;9(4):408-416. [DOI:10.52547/rbmb.9.4.408] [PMID] []
10. Shekari N, Baradaran B, Shanehbandi D, Kazemi T. Circulating MicroRNAs: Valuable Biomarkers for the Diagnosis and Prognosis of Gastric Cancer. Curr Med Chem. 2018;25(6):698-714. [DOI:10.2174/0929867324666171003123425] [PMID]
11. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-8. [DOI:10.1038/nprot.2008.73] [PMID]
12. Hogan NM, Joyce MR, Kerin MJ. MicroRNA expression in colorectal cancer. Cancer Biomark. 2012;11(6):239-43. [DOI:10.3233/CBM-2012-00278] [PMID]
13. Luo X, Burwinkel B, Tao S, Brenner H. MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2011;20(7):1272-86. [DOI:10.1158/1055-9965.EPI-11-0035] [PMID]
14. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311(4):392-404. [DOI:10.1001/jama.2013.284664] [PMID]
15. Hussen BM, Ahmadi G, Marzban H, Fard Azar ME, Sorayyayi S, Karampour R, et al. The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb Pathog. 2021;150:104692. [DOI:10.1016/j.micpath.2020.104692] [PMID]
16. Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7(7):e41629. [DOI:10.1371/journal.pone.0041629] [PMID] []
17. Karimi N, Ali Hosseinpour Feizi M, Safaralizadeh R, Hashemzadeh S, Baradaran B, Shokouhi B, Teimourian S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc. 2019;82(3):215-220. [DOI:10.1097/JCMA.0000000000000031] [PMID]
18. Chen S, Fu Z, Wen S, Yang X, Yu C, Zhou W, et al. Expression and Diagnostic Value of miR-497 and miR-1246 in Hepatocellular Carcinoma. Front Genet. 2021;12:666306. [DOI:10.3389/fgene.2021.666306] [PMID] []
19. Chen X, Xu X, Pan B, Zeng K, Xu M, Liu X, et al. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY). 2018;10(11):3421-3437. [DOI:10.18632/aging.101656] [PMID] []
20. Aherne ST, Madden SF, Hughes DJ, Pardini B, Naccarati A, Levy M, et al. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer. 2015;15:329. [DOI:10.1186/s12885-015-1327-5] [PMID] []
21. Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115(4):772-84. [DOI:10.1002/jcb.24721] [PMID]
22. Tang X, Yang M, Wang Z, Wu X, Wang D. MicroRNA-23a promotes colorectal cancer cell migration and proliferation by targeting at MARK1. Acta Biochim Biophys Sin (Shanghai). 2019;51(7):661-668. [DOI:10.1093/abbs/gmz047] [PMID]
23. Deng YH, Deng ZH, Hao H, Wu XL, Gao H, Tang SH, Tang H. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res. 2018;373(1-2):171-179. [DOI:10.1016/j.yexcr.2018.10.010] [PMID]
24. Liu L, Zhang C, Li X, Sun W, Qin S, Qin L, Wang X. miR-223 promotes colon cancer by directly targeting p120 catenin. Oncotarget. 2017;8(38):63764-63779. [DOI:10.18632/oncotarget.19541] [PMID] []
25. Zhang J, Luo X, Li H, Yue X, Deng L, Cui Y, Lu Y. MicroRNA-223 functions as an oncogene in human colorectal cancer cells. Oncol Rep. 2014;32(1):115-20. https://doi.org/10.3892/or.2020.7605 [DOI:10.3892/or.2014.3173] []
26. Fan H, Liu X, Zheng WW, Zhuang ZH, Wang CD. MiR-150 alleviates EMT and cell invasion of colorectal cancer through targeting Gli1. European Review for Medical & Pharmacological Sciences. 2017;21(21).
27. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A. 2007;104(41):16170-5. [DOI:10.1073/pnas.0703942104] [PMID] []
28. He Z, Dang J, Song A, Cui X, Ma Z, Zhang Y. The involvement of miR-150/β-catenin axis in colorectal cancer progression. Biomed Pharmacother. 2020;121:109495. [DOI:10.1016/j.biopha.2019.109495] [PMID]
29. Zhao YJ, Song X, Niu L, Tang Y, Song X, Xie L. Circulating Exosomal miR-150-5p and miR-99b-5p as Diagnostic Biomarkers for Colorectal Cancer. Front Oncol. 2019;9:1129. [DOI:10.3389/fonc.2019.01129] [PMID] []
30. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A Review on the Role of miR-1246 in the Pathoetiology of Different Cancers. Front Mol Biosci. 2022;8:771835. [DOI:10.3389/fmolb.2021.771835] [PMID] []
31. Chen J, Yao D, Zhao S, He C, Ding N, Li L, Long F. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2. Arch Gynecol Obstet. 2014;290(4):725-32. [DOI:10.1007/s00404-014-3260-2] [PMID]
32. Wang S, Zeng Y, Zhou JM, Nie SL, Peng Q, Gong J, Huo JR. MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction. Mol Med Rep. 2016;13(1):273-80. https://doi.org/10.3892/mmr.2013.1804 [DOI:10.3892/mmr.2015.4557]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb