Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 619-630 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafar Sameri M, Savari F, Mard S A, Rezaie A, Kalantar M. Zinc Oxide Nanoparticles Ameliorate Histological Alterations Through Apoptotic Gene Regulation in Rat Model of Liver Ischemia-Reperfusion Injury. rbmb.net 2024; 12 (4) :619-630
URL: http://rbmb.net/article-1-1345-en.html
Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
Abstract:   (811 Views)
Background: Organ ischemia-reperfusion (IR) is a common clinical condition associated with various situations such as trauma surgery, organ transplantation, and myocardial ischemia. Current therapeutic methods for IR injury have limitations, and nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), offers new approaches for disease diagnosis and treatment. In this study, we investigated the protective and anti-apoptotic effects of ZnO NPs in liver ischemia-reperfusion (IR) injury in rats.
Methods: Forty-eight male rats were divided into six groups: sham, ZnO5, ZnO10, ischemia-reperfusion (IR), IR+ZnO5, and IR+ZnO10. The protective effect of ZnO NPs was evaluated by liver enzymes (AST, ALT, Bilirubin, ALP), biochemical (TAC, TNF-α, and MDA), molecular examinations (Bcl2, BAX), and histopathological evaluations (H&E, TUNEL).
Results: Pre-treatment with ZnO5 and ZnO10 improved hepatic function in IR liver injury, attenuated the levels of oxidants (P = 0.03) and inflammatory mediators, and reduced apoptosis (P = 0). ZnO10 was found to have a greater effect on ischemic reperfusion injury than ZnO5 did. Histopathological examination also showed a dose-dependent decrease in alterations in the IR+ZnO5 and IR+ZnO10 groups.
Conclusion: Administration of ZnO5 and ZnO10 improved liver function after IR. The findings of this study suggest that ZnO NPs have a protective effect against oxidative stress and apoptosis in liver ischemia-reperfusion injury in rats. These results may have important implications for developing advanced methods in ischemia-reperfusion treatment.

Keywords: Anti Apoptotic Protein, Caspase 3, Metal Nanoparticle, Zinc Compounds.

Background: Organ ischemia-reperfusion (IR) is a common clinical condition associated with various situations such as trauma surgery, organ transplantation, and myocardial ischemia. Current therapeutic methods for IR injury have limitations, and nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), offers new approaches for disease diagnosis and treatment. In this study, we investigated the protective and anti-apoptotic effects of ZnO NPs in liver ischemia-reperfusion (IR) injury in rats.
Methods: Forty-eight male rats were divided into six groups: sham, ZnO5, ZnO10, ischemia-reperfusion (IR), IR+ZnO5, and IR+ZnO10. The protective effect of ZnO NPs was evaluated by liver enzymes (AST, ALT, Bilirubin, ALP), biochemical (TAC, TNF-α, and MDA), molecular examinations (Bcl2, BAX), and histopathological evaluations (H&E, TUNEL).
Results: Pre-treatment with ZnO5 and ZnO10 improved hepatic function in IR liver injury, attenuated the levels of oxidants (P = 0.03) and inflammatory mediators, and reduced apoptosis (P = 0). ZnO10 was found to have a greater effect on ischemic reperfusion injury than ZnO5 did. Histopathological examination also showed a dose-dependent decrease in alterations in the IR+ZnO5 and IR+ZnO10 groups.
Conclusion: Administration of ZnO5 and ZnO10 improved liver function after IR. The findings of this study suggest that ZnO NPs have a protective effect against oxidative stress and apoptosis in liver ischemia-reperfusion injury in rats. These results may have important implications for developing advanced methods in ischemia-reperfusion treatment.

Full-Text [PDF 339 kb]   (196 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/02/16 | Accepted: 2024/05/19 | Published: 2024/07/2

References
1. Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr. 2017;17(4): 277-287. [DOI:10.3727/105221617X15042750874156] [PMID] []
2. Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov. 2023;9(1):115. https://doi.org/10.1038/s41420-023-01387-0 [DOI:10.1038/s41420-023-01436-8] [PMID] []
3. El-Bahy AA, Kassem LA, Heikal OA, Mahran LG. Antiapoptotic effect of DDB against hepatic ischemia-reperfusion injury. J Toxicol Sci. 2011;36(2):145-54. [DOI:10.2131/jts.36.145] [PMID]
4. Quesnelle KM, Bystrom PV, Toledo-Pereyra LH. Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol. 2015;89:651-7. [DOI:10.1007/s00204-014-1437-x] [PMID]
5. Hofmann J, Pühringer M, Steinkellner S, Holl A-S, Meszaros AT, Schneeberger S, et al. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants. 2023;12(1):31. [DOI:10.3390/antiox12010031] [PMID] []
6. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. [DOI:10.1016/B978-0-12-394309-5.00006-7] [PMID] []
7. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33:S57-S70. [DOI:10.1016/j.ijsu.2016.05.050] [PMID]
8. Elmorshdy Elsaeed Mohammed Elmorshdy S, Ahmed Shaker G, Helmy Eldken Z, Abdelbadie Salem M, Awadalla A, Mahmoud Abdel Shakour H, et al. Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms. Rep Biochem Mol Biol. 2023;12(3):495-511.
9. Souri F, Badavi M, Dianat M, Mard SA, Sarkaki A. Effect of Gallic Acid Pretreatment and SGK1 Enzyme Inhibition on Cardiac Function and Inflammation in a Rat Model of Ischemia-Reperfusion Injury. Rep Biochem Mol Biol. 2023;12(1):159-72.
10. Dogra S, Kar AK, Girdhar K, Daniel PV, Chatterjee S, Choubey A, et al. Zinc oxide nanoparticles attenuate hepatic steatosis development in high-fat-diet fed mice through activated AMPK signaling axis. Nanomedicine. 2019;17:210-22. [DOI:10.1016/j.nano.2019.01.013] [PMID]
11. Kim MH. Biological effects of zinc oxide nanoparticles on inflammation. Cellmed. 2016;6(4):23.1-.6. [DOI:10.5667/tang.2016.0013]
12. El-Bahr SM, Shousha S, Albokhadaim I, Shehab A, Khattab W, Ahmed-Farid O, et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet Res. 2020;16(1):349. [DOI:10.1186/s12917-020-02482-5] [PMID] []
13. Czyżowska A, Barbasz A. A review: zinc oxide nanoparticles - friends or enemies? Int J Environ Health Res. 2022;32(4):885-901. [DOI:10.1080/09603123.2020.1805415] [PMID]
14. Nagar V, Singh T, Tiwari Y, Aseri V, Pandit PP, Chopade RL, et al. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Mater Today Proc. 2022;69:56-63. [DOI:10.1016/j.matpr.2022.09.001]
15. Mohseni Kouchesfahani H, Ostadbagher Kashi A. The protective effect of ZnO nanoparticles on liver and impairments induced by paclitaxel treatment in female Wistar rat. Nova Biologica Reperta. 2016;3(3):218-27. [DOI:10.21859/acadpub.nbr.3.3.218]
16. Torabi F, Malekzadeh Shafaroudi M, Rezaei N. Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int J Reprod Biomed. 2017;15(7):403-12. [DOI:10.29252/ijrm.15.7.403] [PMID] []
17. Abbasi-Oshaghi E, Mirzaei F, Mirzaei A. Effects of ZnO nanoparticles on intestinal function and structure in normal/high fat diet-fed rats and Caco-2 cells. Nanomedicine. 2018;13(21):2791-816. [DOI:10.2217/nnm-2018-0202] [PMID]
18. Wahab R, Ansari SG, Kim YS, Dar MA, Shin H-S. Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloys Compd. 2008;461(1):66-71. [DOI:10.1016/j.jallcom.2007.07.029]
19. Jafar Sameri M, Belali R, Neisi N, Noei Razliqi R, Mard SA, Savari F, Azandeh SS. Sodium Hydrosulfide Modification of Mesenchymal Stem Cell-Exosomes Improves Liver Function in CCL4-Induced Hepatic Injury in Mice. Rep Biochem Mol Biol. 2023;11(4):644-655. [DOI:10.52547/rbmb.11.4.644] [PMID] []
20. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022;635:194-202. [DOI:10.1016/j.bbrc.2022.09.111] [PMID]
21. Rani V, Verma Y, Rana K, Rana SVS. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact. 2018;295:84-92. [DOI:10.1016/j.cbi.2017.10.009] [PMID]
22. Roma K, Mohammed S, Sieck B, Naik K, Wahid S. Kratom-induced acute liver injury: A case study and the importance of herbal supplement regulation. J Hepatol. 2023;79(2):581-584. [DOI:10.1016/j.jhep.2023.04.026] [PMID]
23. Meng X, Tang GY, Liu PH, Zhao CJ, Liu Q, Li HB. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on CCl4-induced liver injury in mice. World J Gastroenterol. 2020;26(37):5629-5645. [DOI:10.3748/wjg.v26.i37.5629] [PMID] []
24. Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, et al. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep. 2020;22(6):4519-4530. [DOI:10.3892/mmr.2020.11561] [PMID] []
25. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022;635:194-202. [DOI:10.1016/j.bbrc.2022.09.111] [PMID]
26. Liu Y, Lu T, Zhang C, Xu J, Xue Z, Busuttil RW, et al. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J Hepatol. 2019;71(4):719-730. [DOI:10.1016/j.jhep.2019.05.029] [PMID] []
27. Czigany Z, Lurje I, Schmelzle M, Schöning W, Öllinger R, Raschzok N, et al. Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications. J Clin Med. 2020;9(3):846. [DOI:10.3390/jcm9030846] [PMID] []
28. Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Peralta C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells. 2019;8(10):1131. [DOI:10.3390/cells8101131] [PMID] []
29. Ye J, Peng J, Liu K, Zhang T, Huang W. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2022;323(3):G283-G293.. [DOI:10.1152/ajpgi.00354.2021] [PMID]
30. Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res. 2020;196(1):1-9. [DOI:10.1007/s12011-019-01892-3] [PMID]
31. Chen Q, Liu Y, Ding X, Li Q, Qiu F, Wang M, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465(1-2):103-114. [DOI:10.1007/s11010-019-03671-z] [PMID] []
32. Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, Agostinelli E. BCL2 regulated apoptotic process in myocardial ischemia reperfusion injury. Int J Mol Med. 2021;47(1):23-36. [DOI:10.3892/ijmm.2020.4781] [PMID] []
33. Elshama SS, Abdallah ME, Abdel-Karim RI. Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. Open Nanomed J. 2018;5(1):16-22. [DOI:10.2174/1875933501805010016]
34. Zhang Y, Zhang L, Mao L, Fan J, Jiang X, Li N, et al. Intestinal Microbiota-derived Propionic Acid Protects against Zinc Oxide Nanoparticle-induced Lung Injury. Am J Respir Cell Mol Biol. 2022;67(6):680-694. [DOI:10.1165/rcmb.2021-0515OC] [PMID]
35. Pei X, Jiang H, Li C, Li D, Tang S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. J Hazard Mater. 2023;442:130039. [DOI:10.1016/j.jhazmat.2022.130039] [PMID]
36. Guo T, Fang X, Liu Y, Ruan Y, Hu Y, Wang X, et al. Acute lung inflammation induced by zinc oxide nanoparticles: Evolution and intervention via NRF2 activator. Food Chem Toxicol. 2022;162:112898. [DOI:10.1016/j.fct.2022.112898] [PMID]
37. Kaur T, Bala M, Kumar G, Vyas A. Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol. 2022;204(10):620. [DOI:10.1007/s00203-022-03218-9] [PMID]
38. Dkhil MA, Al-Quraishy S, Wahab R. Anticoccidial and antioxidant activities of zinc oxide nanoparticles on Eimeria papillata-induced infection in the jejunum. Int J Nanomedicine. 2015;10:1961-8. [DOI:10.2147/IJN.S79944] [PMID] []
39. Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, et al, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending on the Dose and Route of Administration in Healthy and Diabetic Rats. Nanomaterials. 2020;10(10):2005. [DOI:10.3390/nano10102005] [PMID] []
40. Fujihara J, Nishimoto N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res. 2024;202(1):9-23. https://doi.org/10.1007/s12011-023-03671-7 [DOI:10.1007/s12011-023-03644-w]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb