Volume 13, Issue 1 (Vol.13 No.1 Apr 2024)                   rbmb.net 2024, 13(1): 67-78 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aly Hassan E, Mohamed Elsaid A, Mahmoud El-Refaey A, Abou Elzahab M, Mahfouz Youssef M, Elmougy R. Association of ABCB1(Rs10276036, C/T) Gene, IL-18, and TNFα as Risk Factors for Nephrotic Syndrome Incidence. rbmb.net 2024; 13 (1) :67-78
URL: http://rbmb.net/article-1-1356-en.html
Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
Abstract:   (475 Views)
Background: The most common cause of Nephrotic Syndrome (NS) in children is idiopathic NS, also called nephrosis. The most prominent clinical signs are hyperlipidemia, severe proteinuria, edema, swelling of body tissues, and an increased risk of infection. The object of this study was to examine the correlation of the ABCB1 gene (rs10276036, C > T), IL-18, and TNFα to the prevalence of NS among Egyptian children having NS.

Methods: This study included 100 participants with NS and 100 healthy controls. To analyze the ABCB1 gene (rs10276036 C >T) variant PCR technique was used. IL-18 and TNF levels were estimated using Enzyme-Linked Immunosorbent Assay (ELISA).

Results: Increased frequency of CT and TT genotypes of the ABCB1 gene (rs10276036 C / T) in NS patients compared to controls, with p-value = 0.001, OR = 2.270, CI = (1.550-3.327) for CT genotype and p-value = 0.001, OR = 5.070, CI = (2.463-10.438) for TT genotype. The frequencies of ABCB1 (rs10276036 C >T) genotypes were statistically significant in the dominant model (OR 2.560; p< 0.001) and in the recessive model OR, 3.231; p= 0.001). Significantly high levels of both IL-18 and TNFα were found in NS patients compared to controls.

Conclusion: The ABCB1gene (rs10276036 C/T), IL-18, and TNFα are associated with the prevalence of NS in Egyptian children and might be considered as independent risk factors for its incidence.

Full-Text [PDF 365 kb]   (119 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/03/1 | Accepted: 2024/07/7 | Published: 2024/10/22

References
1. Yousefinejad A, Siassi F, Javanbakht MH, Mohammadi H, Ghaedi E, Zarei M, Djalali E, Djalali M. Effect of Genistein and L-carnitine and Their Combination on Lipid Profile and Inflammatory Cytokines in Experimental Nephrotic Syndrome. Rep Biochem Mol Biol. 2018;7(1):1-8.
2. Gordillo R, Spitzer A. The nephrotic syndrome. Pediatr Rev. 2009 Mar;30(3):94-104 [DOI:10.1542/pir.30.3.94] [PMID]
3. quiz 105. doi: 10.1542/pir.30-3-94. Erratum in: Pediatr Rev. 2009;30(10):408. [DOI:10.1542/pir.30-3-94] [PMID]
4. Shabaka A, Tato Ribera A, Fernández-Juárez G. Focal Segmental Glomerulosclerosis: State-of-the-Art and Clinical Perspective. Nephron. 2020;144(9):413-427. [DOI:10.1159/000508099] [PMID]
5. Schijvens AM, Ter Heine R, de Wildt SN, Schreuder MF. Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome. Pediatr Nephrol. 2019;34(3):389-403. [DOI:10.1007/s00467-018-3929-z] [PMID] []
6. Candelier JJ, Lorenzo HK. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res. 2020;379(2):231-243. [DOI:10.1007/s00441-019-03147-y] [PMID]
7. Johnstone DB, Zhang J, George B, Léon C, Gachet C, Wong H, et al. Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol. 2011;31(10):2162-70. [DOI:10.1128/MCB.05234-11] [PMID] []
8. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol. 2003;43:285-307. [DOI:10.1146/annurev.pharmtox.43.100901.140233] [PMID]
9. Xu P, Jiang ZP, Zhang BK, Tu JY, Li HD. Impact of MDR1 haplotypes derived from C1236T, G2677T/A and C3435T on the pharmacokinetics of single-dose oral digoxin in healthy Chinese volunteers. Pharmacology. 2008;82(3):221-7. [DOI:10.1159/000156488] [PMID]
10. Han SS, Xu YQ, Lu Y, Gu XC, Wang Y. A PRISMA-compliant meta-analysis of MDR1 polymorphisms and idiopathic nephrotic syndrome: Susceptibility and steroid responsiveness. Medicine (Baltimore). 2017;96(24):e7191. [DOI:10.1097/MD.0000000000007191] [PMID] []
11. Jafar T, Prasad N, Agarwal V, Mahdi A, Gupta A, Sharma RK, et al. MDR-1 gene polymorphisms in steroid-responsive versus steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant. 2011;26(12):3968-74. [DOI:10.1093/ndt/gfr150] [PMID]
12. Saleem MA, Kobayashi Y. Cell biology and genetics of minimal change disease. F1000Res. 2016;5:F1000 Faculty Rev-412. [DOI:10.12688/f1000research.7300.1] [PMID] []
13. Narayanan KB, Park HH. Purification and analysis of the interactions of caspase-1 and ASC for assembly of the inflammasome. Appl Biochem Biotechnol. 2015;175(6):2883-94. [DOI:10.1007/s12010-014-1471-4] [PMID]
14. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130-42. [DOI:10.1111/imr.12287] [PMID] []
15. Agnihotri SK, Kumar B, Jain A, Anjali A, Negi MPS, Sachan R, et al. Clinical Significance of Circulating Serum Levels of sCD95 and TNF-α in Cytoprotection of Cervical Cancer. Rep Biochem Mol Biol. 2022;10(4):711-721. [DOI:10.52547/rbmb.10.4.711] [PMID] []
16. Aldhalmi AK, Al-Athari AJH, Makki Al-Hindy HA. Association of Tumor Necrosis Factor-α and Myeloperoxidase enzyme with Severe Asthma: A comparative study. Rep Biochem Mol Biol. 2022;11(2):238-245.
17. Ahmadian E, Rahbar Saadat Y, Dalir Abdolahinia E, Bastami M, Shoja MM, Zununi Vahed S, Ardalan M. The Role of Cytokines in Nephrotic Syndrome. Mediators Inflamm. 2022;2022:6499668. [DOI:10.1155/2022/6499668] [PMID] []
18. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int J Mol Sci. 2021;22(5):2719. [DOI:10.3390/ijms22052719] [PMID] []
19. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev. 2015;2015:610813. [DOI:10.1155/2015/610813] [PMID] []
20. Tieranu I, Dutescu MI, Bara C, Tieranu CG, Balgradean M, Popa OM. Preliminary Study Regarding the Association between Tumor Necrosis Factor Alpha Gene Polymorphisms and Childhood Idiopathic Nephrotic Syndrome in Romanian Pediatric Patients. Maedica (Bucur). 2017;12(3):164-168.
21. Faraji A, Dehghan Manshadi HR, Mobaraki M, Zare M, Houshmand M. Association of ABCB1 and SLC22A16 Gene Polymorphisms with Incidence of Doxorubicin-Induced Febrile Neutropenia: A Survey of Iranian Breast Cancer Patients. PLoS One. 2016;11(12):e0168519. [DOI:10.1371/journal.pone.0168519] [PMID] []
22. Dong M, Zhao M, Cui M, Sun J, Meng X, Sun W, et al. Interleukin-18 binding protein attenuates renal injury of adriamycin-induced mouse nephropathy. Int J Clin Exp Pathol. 2019;12(8):3005-3012.
23. Kwok PY. Approaches to allele frequency determination. Pharmacogenomics. 2000;1(2):231-5. [DOI:10.1517/14622416.1.2.231] [PMID]
24. Gauderman WJ, Morrison JM. QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2006. http://hydra.usc.edu/gxe.
25. Mubarak M, Kazi JI, Lanewala A, Hashmi S, Akhter F. Pathology of idiopathic nephrotic syndrome in children: are the adolescents different from young children? Nephrol Dial Transplant. 2012;27(2):722-6. [DOI:10.1093/ndt/gfr221] [PMID]
26. Arbus G, Getu H, Baumal R, Mraz V, Jabs D, Eddy A. Long term follow up, including renal transplantation, of children with membranoproliferative glomerulonephritis. In: Murakami K, Kitagawa T, Yabuta K, Sakai T (eds). Recent Advances in Pediatric Nephrology. Excerpta Medica, Amsterdam, 1987; 241-246.
27. Ozkaya N, Cakar N, Ekim M, Kara N, Akkök N, Yalçinkaya F. Primary nephrotic syndrome during childhood in Turkey. Pediatr Int. 2004;46(4):436-8. [DOI:10.1111/j.1442-200x.2004.01920.x] [PMID]
28. Arif MK, Arif M, Amjad N. A histopathological outlook on nephrotic syndrome: A pediatric perspective. Indian J Nephrol. 2016;26(3):188-91. [DOI:10.4103/0971-4065.159555] [PMID] []
29. Siddique AB, Hanif M, Ahmed F, Hossain N, Uddin M. Correlation between Serum Prednisolone and Serum Albumin level in Childhood with Nephrotic Syndrome: A study in tertiary care hospital in Bangladesh. IOSR J Dent Med Sci. 2018;17(9):62-66.
30. Moussa A, Mabrouk S, Hamdouni H, Ajmi M, Tfifha M, Omezzine A, et al. MDR-1 and CYP3A5 Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome: Impact on Susceptibility and Response to Steroids (Preliminary Results). Clin Lab. 2017;63(7):1233-1242. [DOI:10.7754/Clin.Lab.2017.170203] [PMID]
31. Youssef DM, Attia TA, El-Shal AS, Abduelometty FA. Multi-drug resistance-1 gene polymorphisms in nephrotic syndrome: impact on susceptibility and response to steroids. Gene. 2013;530(2):201-7. [DOI:10.1016/j.gene.2013.08.045] [PMID]
32. Farhat K, Waheed A, Hussain A, Iqbal J, Mansoor Q, Ismail M. Polymorphisms of the ABCB1 Gene in the Pakistani Population. J Coll Physicians Surg Pak. 2015;25(7):482-5.
33. Wasilewska AM, Zoch-Zwierz WM, Pietruczuk M. Expression of P-glycoprotein in lymphocytes of children with nephrotic syndrome treated with glucocorticoids. Eur J Pediatr.2006;165(12):839-44. [DOI:10.1007/s00431-006-0177-1] [PMID]
34. Aziz MA, Islam MS. The role of ABCB1 gene polymorphisms in steroid-resistant nephrotic syndrome: Evidence from a meta-analysis of steroid-receiving patients. J Gene Med. 2022;24(7):e3436. [DOI:10.1002/jgm.3436] [PMID]
35. Cizmarikova M, Podracka L, Klimcakova L, Habalova V, Boor A, Mojzis J, Mirossay L. MDR1 polymorphisms and idiopathic nephrotic syndrome in Slovak children: preliminary results. Med Sci Monit. 2015;21:59-68. [DOI:10.12659/MSM.891366] [PMID] []
36. Ganesan A, Mini Jacob S, Arvind Selvin Kumar R, Padmaraj R, Anandan B, Sambantham S, et al. Identification of Functional Single Nucleotide Polymorphisms of Multidrug Resistance Gene-1 Among Nephrotic Syndrome Children in South India. Asian J Pharm Clin Res. 2017;10(2):418-422. [DOI:10.22159/ajpcr.2017.v10i2.16067]
37. Choi HJ, Cho HY, Ro H, Lee SH, Han KH, Lee H, et al. Polymorphisms of the MDR1 and MIF genes in children with nephrotic syndrome. Pediatr Nephrol. 2011;26(11):1981-8. [DOI:10.1007/s00467-011-1903-0] [PMID]
38. VanderBrink BA, Asanuma H, Hile K, Zhang H, Rink RC, Meldrum KK. Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor. J Urol. 2011;186(4):1502-8. [DOI:10.1016/j.juro.2011.05.046] [PMID] []
39. Kho MC, Park JH, Han BH, Tan R, Yoon JJ, Kim HY, et al. Plantago asiatica L. Ameliorates Puromycin Aminonucleoside-Induced Nephrotic Syndrome by Suppressing Inflammation and Apoptosis. Nutrients. 2017;9(4):386. [DOI:10.3390/nu9040386] [PMID] []
40. Schachter AD. The pediatric nephrotic syndrome spectrum: clinical homogeneity and molecular heterogeneity. Pediatr Transplant. 2004;8(4):344-8. [DOI:10.1111/j.1399-3046.2004.00179.x] [PMID] []
41. Moharrerpour SS, Nickavar A, Bojd SS, Makhtomi S, Ghorbani H. Serum interleukin-18 in children with steroid sensitive nephrotic syndrome. J Renal Inj Prev. 2019;8(4): 289-291. [DOI:10.15171/jrip.2019.53]
42. Attalla HA, Ahmed AM. Prediction of Acute Kidney Injury in Critically-Ill Pediatric Patients Admitted to PICU: The Role of Serum Cystatin C and Serum Interleukin-18. Egyptian J Hosp Med. 2020;80(2):943-950. [DOI:10.21608/ejhm.2020.103660]
43. Al-Assadi AB, Abdulmohammed N, Ali SH. Serum Tumor Necrosis Factor-Alpha (TNF-α) Levels in Children with Nephrotic Syndrome and Its Correlation with Biochemical Parameters. Int J Curr Microbiol App Sci. 2018;7(9):3464-3470. [DOI:10.20546/ijcmas.2018.709.429]
44. Suranyi MG, Guasch A, Hall BM, Myers BD. Elevated levels of tumor necrosis factor-alpha in the nephrotic syndrome in humans. Am J Kidney Dis. 1993;21(3):251-9. Liang Y, Chen Y, Chen Y, Gong Y. Role of the glucocorticoid receptor in the recurrence of primary nephrotic syndrome. Exp Ther Med. 2015;10(4):1556-1562. [DOI:10.3892/etm.2015.2665] [PMID] []
45. Liang Y, Chen Y, Chen Y, Gong Y. Role of the glucocorticoid receptor in the recurrence of primary nephrotic syndrome. Exp Ther Med. 2015;10(4):1556-1562. [DOI:10.3892/etm.2015.2665] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb