Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 46-56 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Subali D, Kurnia G, Yanti Y, Christos R E, Shih Y. Unveiling Neuroprotective Potential in Tempeh Peptide Extracts by In Vitro Screening of Anti-Alzheimer’s Compounds. rbmb.net 2025; 14 (1) :46-56
URL: http://rbmb.net/article-1-1392-en.html
Department of Biotechnology, Faculty of Bioscience, Technology, and Innovation, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia.
Abstract:   (843 Views)
Background: Alzheimer’s Disease (AD) incidence and prevalence increase every year, commonly related to neuron inflammation and degeneration conditions. Tempeh, a traditional fermented product from Indonesia, was reported to have anti-inflammatory, antioxidant, and anti-Alzheimer properties. However, anti-Alzheimer properties of tempeh peptide extracts have not been extensively examined. This research studied the effect of the extracted peptide from tempeh in preventing and delaying Alzheimer’s disease.
Methods: Tempeh peptide was extracted using water maceration and quantified using HPLC and spectrophotometry. Anti-Alzheimer properties of tempeh were analyzed with Ellman’s assay of anticholinesterase and in vitro gene expression analysis using LPS-induced neural Schwann cells.
Results: As a result, tempeh contained 19.27% of GABA, which is reported to have anti-Alzheimer properties, and other amino acids. Tempeh peptide extract at 12.5 µg/mL had strong inhibition activity toward acetylcholinesterase at 12.61%, and 100 µg/mL of tempeh peptide extract had 8.97% butyrylcholinesterase inhibition activity. Tempeh peptides extract also altered the expression of various genes related to Alzheimer’s disease, such as TNF-α, BACE 1, Ntrk 1, BDNF 2, and APP.
Conclusion: This research proved that various peptides from tempeh have anti-Alzheimer properties.

Keywords: Alzheimer disease, Gene expression, Peptides, Soy Foods.

Background: Alzheimer’s Disease (AD) incidence and prevalence increase every year, commonly related to neuron inflammation and degeneration conditions. Tempeh, a traditional fermented product from Indonesia, was reported to have anti-inflammatory, antioxidant, and anti-Alzheimer properties. However, anti-Alzheimer properties of tempeh peptide extracts have not been extensively examined. This research studied the effect of the extracted peptide from tempeh in preventing and delaying Alzheimer’s disease.

Methods: Tempeh peptide was extracted using water maceration and quantified using HPLC and spectrophotometry. Anti-Alzheimer properties of tempeh were analyzed with Ellman’s assay of anticholinesterase and in vitro gene expression analysis using LPS-induced neural Schwann cells.

Results: As a result, tempeh contained 19.27% of GABA, which is reported to have anti-Alzheimer properties, and other amino acids. Tempeh peptide extract at 12.5 µg/mL had strong inhibition activity toward acetylcholinesterase at 12.61%, and 100 µg/mL of tempeh peptide extract had 8.97% butyrylcholinesterase inhibition activity. Tempeh peptides extract also altered the expression of various genes related to Alzheimer’s disease, such as TNF-α, BACE 1, Ntrk 1, BDNF 2, and APP.

Conclusion: This research proved that various peptides from tempeh have anti-Alzheimer properties.

Full-Text [PDF 326 kb]   (407 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/05/18 | Accepted: 2025/09/13 | Published: 2025/12/9

References
1. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 2019;14(1):32. [DOI:10.1186/s13024-019-0333-5] [PMID] []
2. Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer's disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. [DOI:10.1186/s12929-019-0524-y] [PMID] []
3. Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2019. Front Aging Neurosci. 2022;14:937486. [DOI:10.3389/fnagi.2022.937486] [PMID] []
4. Mulyani S, Mitchell G, Carter G, Woods B, Warsini S, Saifullah AD, et al. Validity and reliability of the Approaches to Dementia Questionnaire (ADQ) in Indonesian health students. BMC Med Educ. 2025;25(1):798. [DOI:10.1186/s12909-025-07332-2] [PMID] []
5. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15(23):2321-8. [DOI:10.2174/092986708785909111] [PMID] []
6. Chan YC, Lee IT, Wang MF, Yeh -C, Liang BC. Tempeh attenuates cognitive deficit, antioxidant imbalance, and amyloid β of senescence-accelerated mice by modulating Nrf2 expression via MAPK pathway. J Functional Foods. 2018;50:112-9. [DOI:10.1016/j.jff.2018.09.023]
7. Gouras GK, Olsson TT, Hansson O. beta-Amyloid peptides and amyloid plaques in Alzheimer's disease. Neurotherapeutics. 2015;12(1):3-11. [DOI:10.1007/s13311-014-0313-y] [PMID] []
8. Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural compounds for Alzheimer's disease therapy: A systematic review of preclinical and clinical studies. Int J Mol Sci. 2019;20(9):2313. [DOI:10.3390/ijms20092313] [PMID] []
9. Nair RM, Boddepalli VN, Yan MR, Kumar V, Gill B, Pan RS, et al. Global status of vegetable soybean. Plants (Basel). 2023;12(3):609. [DOI:10.3390/plants12030609] [PMID] []
10. Ananta A, Dijaya R, Subali D, Kartawidjajaputra F, Antono L. Effect of processed soybeans (Tofu and Tempeh) consumption, and exercise on Upper Respiratory Tract Immunity. Rep Biochem Mol Biol. 2023;11(4):720-9. [DOI:10.52547/rbmb.11.4.720] [PMID] []
11. Watanabe N, Fujimoto K, Aoki H. Antioxidant activities of the water-soluble fraction in tempeh-like fermented soybean (GABA-tempeh). Int J Food Sci Nutr. 2007;58(8):577-87. [DOI:10.1080/09637480701343846] [PMID]
12. Handajani YS, Turana Y, Yogiara Y, Widjaja NT, Sani TP, Christianto GAM, Suwanto A. Tempeh consumption and cognitive improvement in mild cognitive impairment. Dement Geriatr Cogn Disord. 2020;49(5):497-502. [DOI:10.1159/000510563] [PMID]
13. Thanapreedawat P, Kobayashi H, Inui N, Sakamoto K, Kim M, Yoto A, et al. GABA affects novel object recognition memory and working memory in rats. J Nutr Sci Vitaminol. 2013;59(2):152-7. [DOI:10.3177/jnsv.59.152] [PMID]
14. Limanjaya EC, Subali D, Yanti Y. The anti-Alzheimer compounds from tempeh oil in LPS-induced neuronal Schwann cells. J Ethn Food. 2022;9(45). [DOI:10.1186/s42779-022-00163-2] []
15. Yanti, Maha VNA, Subali D, Tjandrawinata RR. Functional efficacy of tempeh oil microemulsion containing omega 3 for Alzheimer's protection. Food Res. 2023;7(6):168-76. [DOI:10.26656/fr.2017.7(6).977]
16. Hirsch C, Schildknecht S. In vitro research reproducibility: Keeping up high standards. Front Pharmacol. 2019;10:1484. [DOI:10.3389/fphar.2019.01484] [PMID] []
17. Mubarok ZR, Deden MF. Pengaruh penambahan asam sitrat pada proses perebusan dan perendaman kedelai untuk mempercepat proses fermentasi tempe. J Ilmiah Teknik Kimia UNPAM. 2019;3(1):17-22. [DOI:10.32493/jitk.v3i1.2596]
18. Koh SP, Jamaluddin A, Alitheen NB, Ali M, Yusof HM, Long K. Nutritional values of tempe inoculated with different strains of Rhizopus: its γ-aminobutyric acid content and antioxidant property. J Trop Agric and Fd Sc. 2012;40(2):181-92.
19. Le PH, Verscheure L, Le TT, Verheust Y, Raes K. Implementation of HPLC analysis for γ-aminobutyric acid (GABA) in fermented food matrices. Food Analytical Methods. 2020;13(5):1190-201. [DOI:10.1007/s12161-020-01734-2]
20. Karladee D, Suriyong S. γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination. Sci Asia. 2012;38:13-17. [DOI:10.2306/scienceasia1513-1874.2012.38.013]
21. Tolosa L, Donato MT, Gómez-Lechón MJ. General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol. 2015;1250:333-48. [DOI:10.1007/978-1-4939-2074-7_26] [PMID]
22. Panarsky R, Luques L, Weinstock M. Anti-inflammatory effects of ladostigil and its metabolites in aged rat brain and in microglial cells. J Neuroimmune Pharmacol. 2012;7(2):488-98. [DOI:10.1007/s11481-012-9358-z] [PMID]
23. Ningrum A, Anggrahini S, Setyaningsih W, Sofiana I, Pusparasi DA, Mossberg F. Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Resh. 2018;2(5):481-5. [DOI:10.26656/fr.2017.2(5).300]
24. Barus T, Suwanto A, Wahyudi AT, Wijaya H. Role of bacteria in tempe bitter taste formation: Microbiological and molecular biological analysis based on 16S rRNA gene. Microbiology Indonesia. 2008;2(1):17-21. [DOI:10.5454/mi.2.1.4]
25. Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, et al. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. J Sci Food Agric. 2016;96(5):1648-58. [DOI:10.1002/jsfa.7267] [PMID]
26. de Freitas Silva DM, Ferraz VP, Ribeiro AM. Improved high-performance liquid chromatographic method for GABA and glutamate determination in regions of the rodent brain. J Neurosci Methods. 2009;177(2):289-93. [DOI:10.1016/j.jneumeth.2008.10.011] [PMID]
27. Devall AJ, Blake R, Langman N, Smith CG, Richards DA, Whitehead KJ. Monolithic column-based reversed-phase liquid chromatography separation for amino acid assay in microdialysates and cerebral spinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848(2):323-8. [DOI:10.1016/j.jchromb.2006.10.049] [PMID]
28. Aoki H, Uda I, Tagama I, Furuya Y, Endo Y, Fujimoto K. The production of a new tempeh-like fermented soybean containing a high level of g-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem. 2003;67(5):1018-23. [DOI:10.1271/bbb.67.1018] [PMID]
29. Khan W, Bhatt PC, Panda BP. Degradation kinetics of gamma amino butyric acid in Monascus-fermented rice. J of Food Quality. 2015;38:123-9. [DOI:10.1111/jfq.12135]
30. Massoud F, Gauthier S. Update on the pharmacological treatment of alzheimer's disease. Current Neupharmacology. 2010;8(1):69-80. [DOI:10.2174/157015910790909520] [PMID] []
31. Muir JL, Dunnett SB, Robbins TW, Everitt BJ. Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res. 1992;89(611-22). [DOI:10.1007/BF00229886] [PMID]
32. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917-33. [DOI:10.1093/brain/awy132] [PMID] []
33. Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195-203. [DOI:10.1016/j.pharep.2014.09.004] [PMID]
34. Zhang Y, Wei M, Li W, Wang Y, Wang J. Isolation and identification of highly active anticholinesterase ingredients from fermented soybean products. CyTA - J Food. 2017;15(2):220-5. [DOI:10.1080/19476337.2016.1239225]
35. DeBay DR, Reid GA, Pottie IR, Martin E, Bowen CV, Darvesh S. Targeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of alzheimer's disease. Alzheimer's & Demen. 2017;3(2):166-76. [DOI:10.1016/j.trci.2017.01.005] [PMID] []
36. Kumar A, Pintus F, Di Petrillo A, Medda R, Caria P, Matos MJ, et al. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer's disease. Sci Rep. 2018;8(1):4424. [DOI:10.1038/s41598-018-22747-2] [PMID] []
37. Trasvina-Arenas CH, Ayala Medina LA, Vique-Sanchez JL. Gamma-secretase inhibitors selected by molecular docking, to develop a new drug against Alzheimer's disease. Rep Biochem Mol Biol. 2023;12(2):340-9. [DOI:10.61186/rbmb.12.2.340] [PMID] []
38. Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell. 2019;179(2):312-39. [DOI:10.1016/j.cell.2019.09.001] [PMID] []
39. Abid NB, Naseer MI, Kim MO. Comparative gene-expression analysis of Alzheimer's disease progression with aging in transgenic mouse model. Int J Mol Sci. 2019;20(5):1219. [DOI:10.3390/ijms20051219] [PMID] []
40. Paouri E, Tzara O, Kartalou GI, Zenelak S, Georgopoulos S. Peripheral tumor necrosis factor-alpha (TNF-alpha) modulates amyloid pathology by regulating Blood-derived immune cells and glial response in the brain of AD/TNF transgenic mice. J Neurosci. 2017;37(20):5155-71. [DOI:10.1523/JNEUROSCI.2484-16.2017] [PMID] []
41. Chang R, Yee KL. Tumor necrosis factor α inhibition for Alzheimer's disease. J Cent Nerv Syst Dis. 2017; 9:1179573517709278. [DOI:10.1177/1179573517709278] [PMID] []
42. Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids. 2013;45(1):87-94. [DOI:10.1007/s00726-011-1193-7] [PMID] []
43. Chen Z, Simmons MS, Perry RT, Wiener HW, Harrell LE, Go RC. Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) With Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet. 2008;147(3):363-8. [DOI:10.1002/ajmg.b.30607] [PMID]
44. Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1-9. [DOI:10.1016/j.jpsychires.2015.02.021] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb