Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 69-84 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri A M, Asadirad A, Rafati Navaei A, Khodadadi A. Effects of Early Stage Second-Degree Burn Blister Exudate on Macrophage Polarization and In Vitro Activity Against CT-26 Colon Cancer Cells. rbmb.net 2025; 14 (1) :69-84
URL: http://rbmb.net/article-1-1505-en.html
Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Cancer, petroleum, and environmental pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Abstract:   (966 Views)
Background: Human second-degree burns can form blisters that allow burn wound microenvironment (WME) fluid to accumulate, which leads to inflammation. Different types of cells are present in burn WME, including macrophages; these innate immune cells are present in tumor microenvironments (TMEs) and burn WMEs. They adapt their phenotypes according to environmental stimuli, which vary from pro-inflammatory (M1) to anti-inflammatory (M2). It is evident that these microenvironments share some similarities in terms of macrophage plasticity; therefore, this study examines whether burn blister exudate (BBE) can enhance macrophage activity against CT-26 cancer cells by macrophage polarization.

Methods: Real-time PCR and ELISA were used to examine the effects of human BBE on untreated and M2 macrophages. As part of the immune response assessment, yeast phagocytosis was conducted. The impact of BBE-induced macrophages on CT-26 cancer cell survival and migration was assessed using MTT proliferation assay and scratch wound healing assay, respectively.

Results: According to the results, tumor necrosis factor-alpha, interferon regulatory factor 5, induced nitric oxide synthase, and CD86 were upregulated as M1-related markers and cytokines, and M2-associated cytokines and markers, transforming growth factor beta, IL-10, Fizz1, Arginase-1, and CD206, were downregulated in untreated and M2 macrophages treated with BBE. BBE also enhanced the phagocytic capacity of untreated and M2 macrophages. Furthermore, the incubated CT-26 cell line with conditioned medium of BBE treatment groups suppresses proliferation and impedes migration of cancer cells.

Conclusion: we found that BBE-treated macrophages possess an M1-like phenotype and inhibit the proliferation and motility of CT-26 cancer cells.

Full-Text [PDF 625 kb]   (397 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2024/11/1 | Accepted: 2025/08/3 | Published: 2025/12/9

References
1. Li MO, Wolf N, Raulet DH, Akkari L, Pittet MJ, Rodriguez PC, et al. Innate immune cells in the tumor microenvironment. Cancer Cell. 2021;39(6):725-9. [DOI:10.1016/j.ccell.2021.05.016] [PMID]
2. Smyth T, Payton A, Hickman E, Rager JE, Jaspers I. Leveraging a Comprehensive Unbiased RNAseq Database Uncovers New Human Monocyte-Derived Macrophage Subtypes Within Commonly Employed in Vitro Polarization Methods. Sci Rep. 2024;14:26753. [DOI:10.1038/s41598-024-78000-6] [PMID] []
3. Zhang W, Zheng X, Yu Y, Zheng L, Lan J, Wu Y, et al. Renal Cell Carcinoma-Derived Exosomes Deliver lncARSR to Induce Macrophage Polarization and Promote Tumor Progression via STAT3 Pathway. Int J Biol Sci. 2022;18(8):3209-3222. [DOI:10.7150/ijbs.70289] [PMID] []
4. Oishi S, Takano R, Tamura S, Tani S, Iwaizumi M, Hamaya Y, et al. M2 Polarization of Murine Peritoneal Macrophages Induces Regulatory Cytokine Production and Suppresses T‐cell Proliferation. Immunology. 2016;149(3):320-8. [DOI:10.1111/imm.12647] [PMID] []
5. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70(12):4840-9. [DOI:10.1158/0008-5472.CAN-10-0269] [PMID]
6. Amin Mohedin J, Rezaiemanesh A, Asadi S, Haddadi M, Abdul Ahmed B, Gorgin Karaji A, Salari F. Resolvin D1 (Rvd1) Attenuates In Vitro LPS-Stimulated Inflammation Through Downregulation of miR-155, miR -146, miR -148 and Krupple Like Factor 5. Rep Biochem Mol Biol. 2024;12(4):566-574. [DOI:10.61186/rbmb.12.4.566] [PMID] []
7. Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z, et al. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Pharmaceuticals (Basel). 2023;16(6):885. [DOI:10.3390/ph16060885] [PMID] []
8. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374-403. [DOI:10.1016/j.ccell.2023.02.016] [PMID]
9. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148-56. [DOI:10.1038/s41590-022-01267-2] [PMID] []
10. Malika N, Zhansaya A, Kasym M, Kanat T, Yerlan R, Kanatbek M. Analysis of Antibody Induction by Macrophages Treated Ex Vivo with Human Proteins in Mice. Rep Biochem Mol Biol. 2023;11(4):694-701. [DOI:10.61186/rbmb.11.2.310] [PMID] []
11. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):11. [DOI:10.1038/s41572-020-0145-5] [PMID] []
12. Li B, Xu K, Liu X. Curative Effect Observation of Applying Silver-Zinc Bacteriostatic Cream to Patients with Second-Degree Burn under Targeted Nursing Intervention and Its Effect on Wound Healing Rate. J Healthc Eng. 2021;2021:7591959. [DOI:10.1155/2021/7591959] [PMID] []
13. Xue Y, Yang F, Li J, Zuo X, Pan B, Li M, et al. Synthesis of an Effective Flame-Retardant Hydrogel for Skin Protection Using Xanthan Gum and Resorcinol Bis(diphenyl phosphate)-Coated Starch. Biomacromolecules. 2021;22(11):4535-4543. [DOI:10.1021/acs.biomac.1c00804] [PMID]
14. Paquet P, Piérard GE. Soluble fractions of tumor necrosis factor-alpha, interleukin-6 and of their receptors in toxic epidermal necrolysis: a comparison with second-degree burns. Int J Mol Med. 1998;1(2):459-62. [DOI:10.3892/ijmm.1.2.459] [PMID]
15. Gäddnäs F, Sutinen M, Koskela M, Tervahartiala T, Sorsa T, Salo T, et al. Matrix- Metalloproteinase -2, -8 and -9 in Serum and Skin Blister Fluid in Patients With Severe Sepsis. Crit Care. 2010;14(2):R49. [DOI:10.1186/cc8938] [PMID] []
16. Widgerow AD, King K, Tocco-Tussardi I, Banyard DA, Chiang R, Awad A, et al. The burn wound exudate-an under-utilized resource. Burns. 2015;41(1):11-7. [DOI:10.1016/j.burns.2014.06.002] [PMID] []
17. Gupta S, Chittoria RK, Chavan V, Aggarwal A, Reddy LC, Mohan PB, et al. Role of Burn Blister Fluid in Wound Healing. J Cutan Aesthet Surg. 2021;14(3):370-373. [DOI:10.4103/JCAS.JCAS_90_19] [PMID] []
18. Ono I, Gunji H, Zhang JZ, Maruyama K, Kaneko F. A study of cytokines in burn blister fluid related to wound healing. Burns. 1995;21(5):352-5. [DOI:10.1016/0305-4179(95)00005-4] [PMID]
19. Lestari T, Syukur S, Revilla G, Sukma Rita R, Rustini R. The Burn Wound Healing Process: A Review. Int J Prog Sci Technol. 2023;40(1):77. [DOI:10.52155/ijpsat.v40.1.5565]
20. Willis ML, Mahung C, Wallet SM, Barnett A, Cairns BA, Coleman LG Jr, Maile R. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. J Leukoc Biol. 2022;111(1):33-49. [DOI:10.1002/JLB.3MIA0321-150RR] [PMID] []
21. Zhang G, Li J, Wang D, Lou H, Zhang C, Liu W. The mechanisms related to fibroblasts in burn surface. Skin Res Technol. 2023;29(8):e13431. [DOI:10.1111/srt.13431] [PMID] []
22. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-62. [DOI:10.1016/j.imbio.2011.01.001] [PMID]
23. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87(1):59-67. [DOI:10.1189/jlb.0409236] [PMID] []
24. Lateef Z, Stuart G, Jones N, Mercer A, Fleming S, Wise L. The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model. Int J Mol Sci. 2019;20(3):538. [DOI:10.3390/ijms20030538] [PMID] []
25. Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today. 2017;22(1):186-193. [DOI:10.1016/j.drudis.2016.08.006] [PMID] []
26. Dvorak HF. Tumors: Wounds That Do Not Heal-A Historical Perspective with a Focus on the Fundamental Roles of Increased Vascular Permeability and Clotting. Semin Thromb Hemost. 2019;45(6):576-92. [DOI:10.1055/s-0039-1687908] [PMID]
27. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650-9. [DOI:10.1056/NEJM198612253152606] [PMID]
28. Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015;3(1):1-11. [DOI:10.1158/2326-6066.CIR-14-0209] [PMID] []
29. Shaw J, Dibble C. Best evidence topic report. Management of burns blisters. Emerg Med J. 2006;23(8):648-9. [DOI:10.1136/emj.2006.039115] [PMID] []
30. Reagan BJ, Staiano-Coico L, LaBruna A, Mathwich M, Finkelstein J, Yurt RW, et al. The effects of burn blister fluid on cultured keratinocytes. J Trauma. 1996;40(3):361-7. [DOI:10.1097/00005373-199603000-00006] [PMID]
31. Suarez-Arnedo A, Torres Figueroa F, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS One. 2020;15(7):e0232565. [DOI:10.1371/journal.pone.0232565] [PMID] []
32. Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol. 2023;20(9):983-992. [DOI:10.1038/s41423-023-01061-6] [PMID] []
33. Shapouri‐Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440. [DOI:10.1002/jcp.26429] [PMID]
34. Kim HS, Kim JH, Yim H, Kim D. Changes in the levels of interleukins 6, 8, and 10, tumor necrosis factor alpha, and granulocyte-colony stimulating factor in Korean burn patients: relation to burn size and postburn time. Ann Lab Med. 2012;32(5):339-44. [DOI:10.3343/alm.2012.32.5.339] [PMID] []
35. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69. [DOI:10.1038/nri2448] [PMID] []
36. Fan Z, Yu P, Wang Y, Wang Y, Fu ML, Liu W, et al. NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors. Blood. 2006;107(4):1342-51. [DOI:10.1182/blood-2005-08-3485] [PMID] []
37. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B. 2020;10(11):2156-70. [DOI:10.1016/j.apsb.2020.04.004] [PMID] []
38. Schultze JL, Schmidt SV. Molecular features of macrophage activation. Semin Immunol. 2015;27(6):416-23. [DOI:10.1016/j.smim.2016.03.009] [PMID]
39. Huang W, Jiang M, Lin Y, Qi Y, Li B. Crosstalk between cancer cells and macrophages promotes OSCC cell migration and invasion through a CXCL1/EGF positive feedback loop. Discov Oncol. 2024;15(1):145. [DOI:10.1007/s12672-024-00972-8] [PMID] []
40. Chen M, Lai R, Lin X, Chen W, Wu H, Zheng Q. Downregulation of triggering receptor expressed on myeloid cells 1 inhibits invasion and migration of liver cancer cells by mediating macrophage polarization. Oncol Rep. 2021;45(4):37. [DOI:10.3892/or.2021.7988] [PMID]
41. Sadeghi M, Amari A, Asadirad A, Nemati M, Khodadadi A. F1 fraction isolated from Mesobuthus eupeus scorpion venom induces macrophage polarization toward M1 phenotype and exerts anti-tumoral effects on the CT26 tumor cell line. Int Immunopharmacol. 2024;132:111960. [DOI:10.1016/j.intimp.2024.111960] [PMID]
42. Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):143. [DOI:10.1186/s13046-018-0815-2] [PMID] []
43. Wang H, Wang X, Li X, Fan Y, Li G, Guo C, et al. CD68(+) HLA-DR (+) M1-like macrophages promote motility of HCC cells via NF-κB/FAK pathway. Cancer Lett. 2014;345(1):91-9. https://doi.org/10.1016/j.canlet.2013.11.013 [DOI:10.1016/j.canlet.2010.01.027] [PMID]
44. Lv C, Li S, Zhao J, Yang P, Yang C. M1 Macrophages Enhance Survival and Invasion of Oral Squamous Cell Carcinoma by Inducing GDF15-Mediated ErbB2 Phosphorylation. ACS Omega. 2022;7(13):11405-14. [DOI:10.1021/acsomega.2c00571] [PMID] []
45. Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest. 2005;115(11):2979-91. [DOI:10.1172/JCI23298] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb