Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 57-68 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hamim H A, Jabbar Satar D A, Heilo Jabber Al-Musawi M, Shahriari-Khalaji M, Tavakoli M, Mirhaj M et al . Role of Visfatin in Chronic Kidney Disease: Diagnostic Potential and Association with Hemodialysis. rbmb.net 2025; 14 (1) :57-68
URL: http://rbmb.net/article-1-1541-en.html
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
Abstract:   (895 Views)
Background: Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, often progressing silently until advanced stages. This study aimed to evaluate the diagnostic potential of serum visfatin levels and Nicotinamide Phosphoribosyl transferase (NAMPT) gene expression in peripheral blood mononuclear cells (PBMCs) among CKD patients, along with their correlation with disease severity and lipid profile.

Methods: A case-control study included 30 CKD patients, divided into two subgroups: 15 end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) and 15 non-dialysis patients. These patients were matched by age and body mass index (BMI) with 30 healthy subjects (HS). Serum visfatin, lipid profile, electrolytes, NAMPT gene expression, and other biochemical markers were measured.

Results: This study showed significantly higher visfatin levels in CKD patients compared to HS, with the highest levels observed in the ESRD group undergoing HD (5.6±1.63 ng/mL compared with 3.5±1.4 ng/mL in CKD without HD, and 2.7±1.1 ng/mL in HS; p≤0.001). Similarly, NAMPT gene expression was significantly upregulated in CKD patients, with the highest expression in the HD group, correlating strongly with serum visfatin levels (r = 0.76, p≤0.001) and lipid profile markers, including triglycerides (r = 0.67, p=0.002) and low-density lipoprotein (LDL; r = 0.61, p=0.004). In CKD patients undergoing HD, visfatin levels showed a positive correlation with triglycerides and LDL levels, suggesting a link with dyslipidemia. No significant correlation was found between visfatin and highly sensitive C-reactive protein (hsCRP), urea, creatinine, or very-low-density lipoprotein (VLDL).

Conclusion: These findings indicate that serum visfatin and NAMPT gene expression could serve as novel biomarkers for assessing CKD severity, particularly in patients undergoing hemodialysis, with potential implications for managing inflammation and cardiovascular risk in CKD.
Full-Text [PDF 284 kb]   (407 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/12/27 | Accepted: 2025/07/12 | Published: 2025/12/9

References
1. Decreased G. Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011). 2013;3(1):19-62. [DOI:10.1038/kisup.2012.64] [PMID] []
2. Pecoits-Filho R, Heimbürger O, Bárány P, Suliman M, Fehrman-Ekholm I, Lindholm B, Stenvinkel P. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis. 2003;41(6):1212-8. [DOI:10.1016/S0272-6386(03)00353-6] [PMID]
3. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85-97. [DOI:10.1161/CIRCULATIONAHA.106.678342] [PMID]
4. Heimbürger O, Stenvinkel P. Adipokines in chronic kidney disease--fat tissue gives nephrologists a message. Perit Dial Int. 2005;25(4):340-2. [DOI:10.1177/089686080502500406] [PMID]
5. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515-81. [DOI:10.1152/physrev.00024.2005] [PMID]
6. Rispoli RM, Popolo A, De Fabrizio V, d'Emmanuele di Villa Bianca R, Autore G, Dalli J, et al. Targeting Inflammatory Imbalance in Chronic Kidney Disease: Focus on Anti-Inflammatory and Resolution Mediators. International Journal of Molecular Sciences. 2025;26(7):3072. [DOI:10.3390/ijms26073072] [PMID] []
7. Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays. 2003;25(7):683-90. [DOI:10.1002/bies.10297] [PMID]
8. Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23(2):164-70. [DOI:10.1097/MOG.0b013e32801b3c8f] [PMID]
9. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548-56. [DOI:10.1210/jc.2004-0395] [PMID]
10. Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm. 2013;2013:946427. [DOI:10.1155/2013/946427] [PMID] []
11. Polyzos SA, Kountouras J, Romiopoulos I, Polymerou V. Serum visfatin in nonalcoholic fatty liver disease. Ann Hepatol. 2013-2014;13(1):150-1. [DOI:10.1016/S1665-2681(19)30917-2]
12. Nzegwu MA, Aligbe J, Ogunbiyi F. Causes and renal morphological changes in chronic renal failure, retrospective study of 50 autopsy cases. Int J Med Med Sci. 2009;1:168-72.
13. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext [Internet], South Dartmouth (MA): MDText.com, Inc.; 2000.
14. 14 Kratzer A, Giral H, Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res. 2014;103(3):350-61. [DOI:10.1093/cvr/cvu139] [PMID]
15. Dunlop JL, Vandal AC, Marshall MR. Low dialysate sodium levels for chronic haemodialysis. Cochrane Database Syst Rev. 2019;1(1):CD011204. [DOI:10.1002/14651858.CD011204.pub2] [PMID] []
16. Sampani E, Theodorakopoulou M, Iatridi F, Sarafidis P. Hyperkalemia in chronic kidney disease: a focus on potassium lowering pharmacotherapy. Expert Opin Pharmacother. 2023;24(16):1775-1789. [DOI:10.1080/14656566.2023.2245756] [PMID]
17. Nisha R, Srinivasa Kannan S, Thanga Mariappan K, Jagatha P. Biochemical evaluation of creatinine and urea in patients with renal failure undergoing hemodialysis. J Clin Path Lab Med. 2017;1(2):1-5.
18. Schainuck LI, Striker GE, Cutler RE, Benditt EP. Structural-functional correlations in renal disease. II. The correlations. Hum Pathol. 1970;1(4):631-41. [DOI:10.1016/S0046-8177(70)80061-2] [PMID]
19. Bohle A, Mackensen-Haen S, Von Gise H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol. 1987;7(6):421-33. [DOI:10.1159/000167514] [PMID]
20. Risdon R, Sloper J, De Wardener H. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet. 1968;292(7564):363-6. [DOI:10.1016/S0140-6736(68)90589-8] [PMID]
21. Tsuchida-Nishiwaki M, Uchida HA, Takeuchi H, Nishiwaki N, Maeshima Y, Saito C, et al. Association of blood pressure and renal outcome in patients with chronic kidney disease; a post hoc analysis of FROM-J study. Sci Rep. 2021;11(1):14990. [DOI:10.1038/s41598-021-94467-z] [PMID] []
22. Axelsson J, Witasp A, Carrero JJ, Qureshi AR, Suliman ME, Heimbürger O, et al. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am J Kidney Dis. 2007;49(2):237-44. [DOI:10.1053/j.ajkd.2006.11.021] [PMID]
23. Carrero JJ, Witasp A, Stenvinkel P, Qureshi AR, Heimbürger O, Bárány P, et al. Visfatin is increased in chronic kidney disease patients with poor appetite and correlates negatively with fasting serum amino acids and triglyceride levels. Nephrol Dial Transplant. 2010;25(3):901-6. [DOI:10.1093/ndt/gfp587] [PMID]
24. Mahmood N, Junejo AM, Jamal Q, Awan R. Association of visfatin with chronic kidney disease in a cohort of patients with and without diabetes. J Pak Med Assoc. 2010;60(11):922.
25. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178(3):1748-58. [DOI:10.4049/jimmunol.178.3.1748] [PMID]
26. Arnaud C, Burger F, Steffens S, Veillard NR, Nguyen TH, Trono D, et al. Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes: new evidence for direct antiinflammatory effects of statins. Arterioscler Thromb Vasc Biol. 2005;25(6):1231-6. [DOI:10.1161/01.ATV.0000163840.63685.0c] [PMID]
27. Axelsson J, Bergsten A, Qureshi A, Heimbürger O, Bárány P, Lönnqvist F, et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney int. 2006;69(3):596-604. [DOI:10.1038/sj.ki.5000089] [PMID]
28. Imai S-i. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des. 2009;15(1):20-8. [DOI:10.2174/138161209787185814] [PMID] []
29. Hsu C-Y, Huang P-H, Chen T-H, Chiang C-H, Leu H-B, Huang C-C, et al. Increased circulating visfatin is associated with progression of kidney disease in non-diabetic hypertensive patients. Am J Hypertens. 2016;29(4):528-36. [DOI:10.1093/ajh/hpv132] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb