Volume 13, Issue 4 (Vol.13 No.4 Jan 2025)                   rbmb.net 2025, 13(4): 570-578 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wihandani D M, Adiputra P A T, Wiguna G W W W, Saputra P G S, Yani M V W, Anjani I A W, et al . Assessment of SF3B1 Expression as a Prognostic Marker for Neoadjuvant Chemotherapy Response in Stage III Triple-Negative Breast Cancer. rbmb.net 2025; 13 (4) :570-578
URL: http://rbmb.net/article-1-1544-en.html
Biochemistry Department, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia.
Abstract:   (300 Views)
Background: SF3B1 is a splicing factor that plays a crucial role in cancer progression and is commonly found in various types of solid cancers. However, the reports regarding the clinical implications of SF3B1 in terms of therapy response, survival, and its relationship with patients' clinicopathological features are still limited. This study aimed to assess SF3B1 expression for neoadjuvant chemotherapy response in stage III triple-negative breast cancer.

Methods: This case-control study was conducted at Prof. Dr. I.G.N.G. Ngoerah General Hospital from March to October 2021. Stage III TNBC breast cancer patients who received neoadjuvant chemotherapy were included. Variables assessed included SF3B1 expression, NAC response, and various histological and clinical parameters. Immunohistochemistry (IHC) for SF3B1 expression was performed using the avidin-biotin method. Data analysis involved univariate, bivariate (chi-square), and multivariate (logistic regression) methods using SPSS, with significance set at p ≤ 0.05.

Results: Analysis showed that high Ki-67, tumor-infiltrating lymphocytes (TILs), and SF3B1 status significantly increased the risk of chemoresistance in TNBC breast cancer (OR=6.4, 95%CI=1.20-34.19, p-value=0.017; OR=4.8, 95%CI=1.05-21.75, p-value=0.031; OR=13.5, 95%CI=1.56-116.24, p-value=0.008, respectively) No significant relationships were found with age, grading, or menopausal status. Multivariate analysis confirmed these variables independently influenced chemoresistance, with aOR=14.4, 95%CI=1.80-115.73 for Ki-67 (p-value=0.012), aOR=6.7, 95%CI=1.12-40.46 for TIL (p-value=0.037), and aOR=13.714, 95%CI=1.56-116.24 for SF3B1 (p-value=0.018).

Conclusion: High SF3B1 expression, alongside high Ki-67 and TIL levels, is potentially a prognostic marker for chemoresistance in stage III TNBC. These findings suggest that targeting SF3B1 could offer a novel therapeutic approach in TNBC patients.
Full-Text [PDF 233 kb]   (110 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/12/28 | Accepted: 2025/03/7 | Published: 2025/07/30

References
1. Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res. 2020;10(5):1568-91.
2. Solikhah S, Perwitasari DA, Rejeki DSS. Geographic Characteristics of Various Cancers in Yogyakarta Province, Indonesia: A Spatial Analysis at the Community Level. Asian Pac J Cancer Prev. 2022;23(4):1231-8. [DOI:10.31557/APJCP.2022.23.4.1231] [PMID] []
3. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. [DOI:10.1186/s13058-020-01296-5] [PMID] []
4. Araujo JM, De la Cruz-Ku G, Cornejo M, Doimi F, Dyer R, Gomez HL, Pinto JA. Prognostic Capability of TNBC 3-Gene Score among Triple-Negative Breast Cancer Subtypes. Cancers (Basel). 2022;14(17):4286. [DOI:10.3390/cancers14174286] [PMID] []
5. Ahmadzadeh A, Khodayar MJ, Salehcheh M, Nazari Khorasgani Z, Matin M. Evaluation of the Total Oxidant Status to the Antioxidant Capacity Ratio as a Valuable Biomarker in Breast Cancer Patients. Rep Biochem Mol Biol. 2023;12(2):277-283. [DOI:10.61186/rbmb.12.2.277] [PMID] []
6. Rezaei A, Shayan N, Shirazinia S, Mollazadeh S, Ghiyasi-Moghaddam N. The Prognostic Significance of P16 Immunohistochemical Expression Pattern in Women with Invasive Ductal Breast Carcinoma. Rep Biochem Mol Biol. 2023;12(1):83-91. [DOI:10.61186/rbmb.12.1.83] [PMID] []
7. Podo F, Santoro F, Di Leo G, Manoukian S, de Giacomi C, Corcione S, et al. Triple-Negative versus Non-Triple-Negative Breast Cancers in High-Risk Women: Phenotype Features and Survival from the HIBCRIT-1 MRI-Including Screening Study. Clin Cancer Res. 2016;22(4):895-904. [DOI:10.1158/1078-0432.CCR-15-0459] [PMID]
8. Yoshida K, Ogawa S. Splicing factor mutations and cancer. Wiley Interdiscip Rev RNA. 2014;5(4):445-59. [DOI:10.1002/wrna.1222] [PMID]
9. Simmler P, Cortijo C, Koch LM, Galliker P, Angori S, Bolck HA, et al. SF3B1 facilitates HIF1-signaling and promotes malignancy in pancreatic cancer. Cell Rep. 2022;40(8):111266. [DOI:10.1016/j.celrep.2022.111266] [PMID]
10. Anczuków O, Krainer AR. Splicing-factor alterations in cancers. RNA. 2016;22(9):1285-301. [DOI:10.1261/rna.057919.116] [PMID] []
11. Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CK, Sapino A, et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J Pathol. 2015;235(4):571-80. [DOI:10.1002/path.4483] [PMID] []
12. Zhang L, Zhang X, Zhang H, Liu F, Bi Y, Zhang Y, et al. Knockdown of SF3B1 inhibits cell proliferation, invasion and migration triggering apoptosis in breast cancer via aberrant splicing. Breast Cancer. 2020;27(3):464-476. [DOI:10.1007/s12282-020-01045-8] [PMID]
13. Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6(1):78. [DOI:10.1038/s41392-021-00486-7] [PMID] []
14. Koedoot E, Wolters L, van de Water B, Dévédec SEL. Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget. 2019;10(57):6021-6037. [DOI:10.18632/oncotarget.27215] [PMID] []
15. Zhou Z, Gong Q, Wang Y, Li M, Wang L, Ding H, Li P. The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res. 2020;8:38. [DOI:10.1186/s40364-020-00220-5] [PMID] []
16. Andreopoulou E, Kelly CM, McDaid HM. Therapeutic Advances and New Directions for Triple-Negative Breast Cancer. Breast Care (Basel). 2017;12(1):21-28. [DOI:10.1159/000455821] [PMID] []
17. Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, et al. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther. 2022;30(3):1018-1035. [DOI:10.1016/j.ymthe.2021.11.010] [PMID] []
18. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10(3):177. [DOI:10.1038/s41419-019-1407-6] [PMID] []
19. Bashari A, Siegfried Z, Karni R. Targeting splicing factors for cancer therapy. RNA. 2023;29(4):506-515. [DOI:10.1261/rna.079585.123] [PMID] []
20. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10(3):177. [DOI:10.1038/s41419-019-1407-6] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb