Volume 13, Issue 4 (Vol.13 No.4 Jan 2025)                   rbmb.net 2025, 13(4): 540-548 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arab Sadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, khajehahmadi Z, Mohagheghi S, Tayebinia H et al . Palmitate-increased TGF-β1 Gene Expression and p-Smad2/3 Protein Levels Attenuated by Chicoric Acid in Patients with Type 2 Diabetes Mellitus. rbmb.net 2025; 13 (4) :540-548
URL: http://rbmb.net/article-1-1592-en.html
Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Abstract:   (378 Views)
Background: The transforming growth factor beta1 (TGF-β1) signaling pathway plays a critical role in the pathogenesis of Type 2 diabetes mellitus (T2DM). Modulating this pathway may offer therapeutic benefits for managing T2DM. Chicoric acid (CA), a polyphenolic compound with reported anti-diabetic properties, has shown potential in metabolic regulation; however, its precise molecular mechanisms remain unclear. This study aimed to investigate the effects of palmitate and CA on the TGF-β1 signaling pathway in peripheral blood mononuclear cells (PBMCs) from newly diagnosed T2DM patients and healthy controls.

Methods: A total of 40 participants, including 20 newly diagnosed T2DM patients and 20 age-matched healthy individuals (40–60 years), were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated and treated with palmitate and CA. The expression of TGF-β1 mRNA was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Protein levels of Smad2/3 and phosphorylated Smad2/3 (p-Smad2/3) were assessed via western blot analysis.

Results: Palmitate stimulation significantly upregulated TGF-β1 gene expression and increased p-Smad2/3 protein levels in PBMCs. However, CA treatment effectively attenuated these palmitate-induced elevations in TGF-β1 expression and p-Smad2/3 protein levels. Additionally, a positive correlation was observed between TGF-β1 expression and p-Smad2/3 protein levels.

Conclusions: These findings suggest that CA may act as an inhibitor of the TGF-β1 signaling pathway, potentially contributing to T2DM management by downregulating TGF-β1/Smad signaling. Further studies are warranted to explore its therapeutic potential in diabetes treatment.

Full-Text [PDF 780 kb]   (124 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2025/02/9 | Accepted: 2025/05/25 | Published: 2025/07/30

References
1. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107. [DOI:10.2991/jegh.k.191028.001] [PMID] []
2. Temelkova-Kurktschiev T, Henkel E, Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected Type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45(1):151.
3. Badiee MS, Vadizadeh A, Salehcheh M, Moosavi M, Shirani M, Fakhredini F, Khodayar MJ. Quercetin and Catechin Protects Leptin-Deficient Lepob/Ob Mice Against Alloxan-Induced Diabetes and Hepatotoxicity via Suppression of Oxidative Stress and Inflammation. Rep Biochem Mol Biol. 2024;13(2):184-195. [DOI:10.61186/rbmb.13.2.184] [PMID] []
4. Emamgholipour S, Hossein-Nezhad A, Ansari M. Can Melatonin Act as an Antioxidant in Hydrogen Peroxide-Induced Oxidative Stress Model in Human Peripheral Blood Mononuclear Cells? Biochem Res Int. 2016;2016:5857940. [DOI:10.1155/2016/5857940] [PMID] []
5. Sadeghabadi ZA, Ziamajidi N, Abbasalipourkabir R, Mohseni R, Borzouei S. Palmitate-induced IL6 expression ameliorated by chicoric acid through AMPK and SIRT1-mediated pathway in the PBMCs of newly diagnosed type 2 diabetes patients and healthy subjects. Cytokine. 2019;116:106-114. [DOI:10.1016/j.cyto.2018.12.012] [PMID]
6. Aihara K, Ikeda Y, Yagi S, Akaike M, Matsumoto T. Transforming Growth Factor-β1 as a Common Target Molecule for Development of Cardiovascular Diseases, Renal Insufficiency and Metabolic Syndrome. Cardiol Res Pract. 2010;2011:175381. [DOI:10.4061/2011/175381] [PMID] []
7. Zilberberg L, Todorovic V, Dabovic B, Horiguchi M, Couroussé T, Sakai LY, Rifkin DB. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol. 2012;227(12):3828-36. [DOI:10.1002/jcp.24094] [PMID] []
8. Fischbach S, Gittes GK. The role of TGF-ß signaling in -ß-cell dysfunction and type 2 diabetes: a review. J Cytol Histol. 2014;5(6):1. [DOI:10.4172/2157-7099.1000282]
9. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685-700. [DOI:10.1016/S0092-8674(03)00432-X] [PMID]
10. Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139(4):757-69. [DOI:10.1016/j.cell.2009.09.035] [PMID] []
11. Beaudoin MS, Snook LA, Arkell AM, Stefanson A, Wan Z, Simpson JA, et al. Novel effects of rosiglitazone on SMAD2 and SMAD3 signaling in white adipose tissue of diabetic rats. Obesity (Silver Spring). 2014;22(7):1632-42. [DOI:10.1002/oby.20717] [PMID]
12. Tan CK, Leuenberger N, Tan MJ, Yan YW, Chen Y, Kambadur R, et al. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes. 2011;60(2):464-76. [DOI:10.2337/db10-0801] [PMID] []
13. Tsurutani Y, Fujimoto M, Takemoto M, Irisuna H, Koshizaka M, Onishi S, et al. The roles of transforming growth factor-β and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun. 2011;407(1):68-73. [DOI:10.1016/j.bbrc.2011.02.106] [PMID]
14. Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, et al. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013;32(12):1549-59. [DOI:10.1038/onc.2012.171] [PMID] []
15. Tan CK, Chong HC, Tan EH, Tan NS. Getting 'Smad' about obesity and diabetes. Nutr Diabetes. 2012;2(3):e29. [DOI:10.1038/nutd.2012.1] [PMID] []
16. 16. Sun YB, Qu X, Howard V, Dai L, Jiang X, Ren Y, et al. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney Int. 2015;88(2):286-98. [DOI:10.1038/ki.2015.121] [PMID]
17. Ghamarian A, Abdollahi M, Su X, Amiri A, Ahadi A, Nowrouzi A. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. Daru. 2012;20(1):56. [DOI:10.1186/2008-2231-20-56] [PMID] []
18. Shim DW, Han JW, Ji YE, Shin WY, Koppula S, Kim MK, et al. Cichorium intybus Linn. Extract Prevents Type 2 Diabetes Through Inhibition of NLRP3 Inflammasome Activation. J Med Food. 2016;19(3):310-7. [DOI:10.1089/jmf.2015.3556] [PMID]
19. Ding X, Jian T, Li J, Lv H, Tong B, Li J, et al. Chicoric Acid Ameliorates Nonalcoholic Fatty Liver Disease via the AMPK/Nrf2/NFκB Signaling Pathway and Restores Gut Microbiota in High-Fat-Diet-Fed Mice. Oxid Med Cell Longev. 2020;2020:9734560. [DOI:10.1155/2020/9734560] [PMID] []
20. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19-S40. doi: 10.2337/dc23-S002. Erratum in: Diabetes Care. 2023 May 1;46(5):1106. doi: 10.2337/dc23-er05. Erratum in: Diabetes Care. 2023 Sep 01;46(9):1715. [DOI:10.2337/dc23-er05] [PMID] []
21. Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Chicoric acid does not restore palmitate-induced decrease in irisin levels in PBMCs of newly diagnosed patients with T2D and healthy subjects. Arch Physiol Biochem. 2022;128(2):532-538. [DOI:10.1080/13813455.2019.1702060] [PMID]
22. Mou X, Zhou DY, Zhou DY, Ma JR, Liu YH, Chen HP, et al. Serum TGF-β1 as a Biomarker for Type 2 Diabetic Nephropathy: A Meta-Analysis of Randomized Controlled Trials. PLoS One. 2016;11(2):e0149513. [DOI:10.1371/journal.pone.0149513] [PMID] []
23. Qiao YC, Chen YL, Pan YH, Ling W, Tian F, Zhang XX, Zhao HL. Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2017;96(15):e6583. [DOI:10.1097/MD.0000000000006583] [PMID] []
24. Thomsen LH, Fog-Tonnesen M, Nielsen Fink L, Norlin J, García de Vinuesa A, Hansen TK, et al. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model. Ren Fail. 2017;39(1):629-642. [DOI:10.1080/0886022X.2017.1361837] [PMID] []
25. Burhan Altemimi R, Nabil Ibrahim N, Ali Nazar L, Ali Hasan H, Heilo Al-Musawi M, Mortazavi Moghadam F. The Predictive Value of Melatonin Levels for the Development of Diabetic Nephropathy in Men with Type 2 Diabetes Mellitus. Rep Biochem Mol Biol. 2024;13(3):341-348. [DOI:10.61186/rbmb.13.3.341] [PMID] []
26. Budi EH, Muthusamy BP, Derynck R. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Sci Signal. 2015;8(396):ra96. [DOI:10.1126/scisignal.aaa9432] [PMID] []
27. Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752. [DOI:10.1038/srep14752] [PMID] []
28. Jung MY, Kang JH, Hernandez DM, Yin X, Andrianifahanana M, Wang Y, Get al. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J. 2018;32(7):3803-3815. [DOI:10.1096/fj.201701187R] [PMID] []
29. Kochumon S, Wilson A, Chandy B, Shenouda S, Tuomilehto J, Sindhu S, Ahmad R. Palmitate Activates CCL4 Expression in Human Monocytic Cells via TLR4/MyD88 Dependent Activation of NF-κB/MAPK/ PI3K Signaling Systems. Cell Physiol Biochem. 2018;46(3):953-964. [DOI:10.1159/000488824] [PMID]
30. 30. Chen YY, Tsai CF, Tsai MC, Chen WK, Hsu YW, Lu FJ. Anti-fibrotic effect of rosmarinic acid on inhibition of pterygium epithelial cells. Int J Ophthalmol. 2018;11(2):189-195.
31. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14(1):67-79. [DOI:10.1016/j.cmet.2011.04.013] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb