Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 1-9 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabbar Jebur A, Mohammed Saleh B O, Nafea Al-Azzawi O F. Status of Serum Levels of Oxidative Stress Biochemical Markers and Total Antioxidant Capacity in Primary Hypothyroidism. rbmb.net 2025; 14 (1) :1-9
URL: http://rbmb.net/article-1-1623-en.html
Department of Clinical Biochemistry, College of Medicine, University of Baghdad, Baghdad, Iraq.
Abstract:   (1306 Views)
Background: Primary hypothyroidism (HT) has been demonstrated to be associated with oxidative stress. This study was designed to assess the role of oxidative stress in the pathogenesis of primary hypothyroidism.

Methods: The study included 97 subjects, age range (of 29-62 years); 57 of them had been diagnosed with primary hypothyroidism, and 40 healthy subjects as controls in Baghdad, during Oct 2023 to 2024. The primary HT subjects were sub-classified into the newly diagnosed primary HT group (n=24) and the established primary HT (n=33) group. Investigations encompassed serum evaluation of total antioxidant capacity (TAC), total oxidant status (TOS), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), NADPH oxidase-4 (NOX4), and Anti-TPO utilizing enzymatic colorimetric methods and enzyme-linked immunosorbent assay (ELISA).

Results: The median and 1st -3rd quartile range values of serum 8-oxo-7,8-dihydro-2'-deoxyguanosine, NADPH oxidase-4, and total antioxidant capacity levels of newly diagnosed and established primary HT were significantly elevated when correlated with those of controls (for all, p< 0.0001), with non-significant differences between both groups of primary HT. The reservoir operating characteristic (ROC) and area under curve revealed that both total oxidant status and DNA damage 8-oxo-dG had high sensitivity and specificity in differentiation between hypothyroidism patients and controls at defined cutoff values.

Conclusion: Elevated levels of serum 8-oxodG, NOX4, and TOS reflect the underlying oxidative damage associated with reduced thyroid function and may participate to the pathogenesis of primary hypothyroidism.

Full-Text [PDF 278 kb]   (595 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2025/03/14 | Accepted: 2025/04/26 | Published: 2025/12/9

References
1. Al-Suhaimi EA, Khan FA. Thyroid glands: Physiology and structure. In: Emerging concepts in endocrine structure and functions. Springer; 2022:133-60. [DOI:10.1007/978-981-16-9016-7_5]
2. Ibraheem RM, Hamdi RA, Kadam SM. Measurement of Serum Stromelysin-2 Level in Iraqi Patients with Subclinical and Clinical Hypothyroidism. J Fac Med Baghdad. 2024;66(1):67-72. [DOI:10.32007/jfacmedbagdad.6612177]
3. Wouters HJCM, Slagter SN, Muller Kobold AC, van der Klauw MM, Wolffenbuttel BHR. Epidemiology of thyroid disorders in the Lifelines Cohort Study (the Netherlands). PLoS One. 2020;15(11):e0242795. [DOI:10.1371/journal.pone.0242795] [PMID] []
4. Vanderpump MPJ. Epidemiology of thyroid disorders. In: The thyroid and its diseases: A comprehensive guide for the clinician. Springer; 2019:75-85. [DOI:10.1007/978-3-319-72102-6_6]
5. Klubo-Gwiezdzinska J, Wartofsky Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132(3):16222. [DOI:10.20452/pamw.16222] [PMID] []
6. Rakha M, Ghanem NS, Rashed LA, Ezzat DA, Habeeb H. Oxidative Stress Biomarkers in Thyroid Dysfunction: From Overt Hypothyroidism to Low Normal Thyroid Hormones. Egypt J Hosp Med. 2022;89(2):7818-24. [DOI:10.21608/ejhm.2022.277391]
7. Abdlkarem HA, Zainulabdeen JA. A Comparative Study of Vitamin D Level and Lactate Dehydrogenase Activity in Relation to Oxidative Stress in Women with Osteoporosis. J Fac Med Baghdad. 2024;66(1):110-5. [DOI:10.32007/jfacmedbagdad.6612255]
8. Ruggeri RM, Campennì A, Giuffrida G, Casciaro M, Barbalace MC, Hrelia S, et al. Oxidative stress as a key feature of autoimmune thyroiditis: an update. Minerva Endocrinol. 2020;45(4):326-44. [DOI:10.23736/S0391-1977.20.03268-X] [PMID]
9. Hasan Anber ZN, Oied Saleh B, Hassan Majed R. Assessment of Oxidative Stress Parameters in Iraqi Male Patients with COVID-19; A Case Control Study. Rep Biochem Mol Biol. 2024;13(2):167-73. [DOI:10.61186/rbmb.13.2.167] [PMID] []
10. Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. In: Cancer. Elsevier; 2021: 179-87. [DOI:10.1016/B978-0-12-819547-5.00017-1]
11. Al-Aubaidy HA, Jelinek HF. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J Endocrinol. 2011;164(6):899-904. [DOI:10.1530/EJE-11-0053] [PMID]
12. Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. Int J Mol Sci. 2020;21(11):3743. [DOI:10.3390/ijms21113743] [PMID] []
13. Nemtsova V, Shalimova A, Kolesnikova O, Vysotska O, Zlatkina V, Zhelezniakova N. Role of plasma 8-OXO-2'-deoxyguanosine in target organ damage in patients with hypertension and type 2 diabetes. Arter Hypertens. 2022;26(2):78-83. [DOI:10.5603/AH.a2022.0006]
14. Kant M, Akış M, Calan M, Arkan T, Bayraktar F, Dizdaroglu M, İşlekel H. Elevated urinary levels of 8-oxo-2′-deoxyguanosine,(5′ R)-and (5′ S)-8, 5′-cyclo-2′-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair (Amst). 2016;48:1-7. [DOI:10.1016/j.dnarep.2016.09.004] [PMID] []
15. Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021;10(6):890. [DOI:10.3390/antiox10060890] [PMID] []
16. Fukai T, Ushio-Fukai M. Cross-talk between NADPH oxidase and mitochondria: role in ROS signaling and angiogenesis. Cells. 2020;9(8):1849. [DOI:10.3390/cells9081849] [PMID] []
17. Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem. 2023;66(17):11632-11655. [DOI:10.1021/acs.jmedchem.3c00770] [PMID] []
18. Miao R, Wang L, Chen Z, Ge S, Li L, Zhang K, et al. Advances in the study of nicotinamide adenine dinucleotide phosphate oxidase in myocardial remodeling. Front Cardiovasc Med. 2022;9:1000578. [DOI:10.3389/fcvm.2022.1000578] [PMID] []
19. Farasati Far B, Behnoush AH, Ghondaghsaz E, Habibi MA, Khalaji A. The interplay between vitamin C and thyroid. Endocrinol Diabetes Metab. 2023;6(4):e432. [DOI:10.1002/edm2.432] [PMID] []
20. Maurya PK. Animal biotechnology as a tool to understand and fight aging. In: Animal Biotechnology. Elsevier; 2020: 235-50. [DOI:10.1016/B978-0-12-811710-1.00010-0]
21. Idan HH, Mohamoud HG. The Total Antioxidant Capacity and its Relationship with Atherosclerosis Risk Factors in a Sample of Iraqi Individuals with Type 2 Diabetes Mellitus. J Fac Med Baghdad. 2024;66(3):357-62. [DOI:10.32007/jfacmedbaghdad.6632334]
22. Ahmadzadeh A, Khodayar MJ, Salehcheh M, Khorasgani ZN, Matin M. Evaluation of the total oxidant status to the antioxidant capacity ratio as a valuable biomarker in breast cancer patients. Rep Biochem Mol Biol. 2023;12(2):277-283. [DOI:10.61186/rbmb.12.2.277] [PMID] []
23. Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: An intriguing link. Indian J Endocrinol Metab. 2016;20(4):554-7. [DOI:10.4103/2230-8210.183454] [PMID] []
24. Fu J, Zhang L, An Y, Duan Y, Liu J, Wang G. Association between body mass index and thyroid function in euthyroid Chinese adults. Med Sci Monit Int Med J Exp Clin Res. 2021;27:e930865-1. [DOI:10.12659/MSM.930865]
25. Wilson SA, Stem LA, Bruehlman RD. Hypothyroidism: Diagnosis and treatment. Am Fam Physician. 2021;103(10):605-13.
26. Riis KR, Larsen CB, Medici BR, Jensen CZ, Winther KH, Larsen EL, et al. Hypothyroid women have persistently higher oxidative stress compared to healthy controls. Eur Thyroid J. 2023;12(6): e230167. [DOI:10.1530/ETJ-23-0167] [PMID] []
27. Halczuk KM, Boguszewska K, Urbaniak SK, Szewczuk M, Karwowski BT. 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a Cause of Autoimmune Thyroid Diseases (AITD) During Pregnancy? Yale J Biol Med. 2020;93(4):501-515.
28. Gong S, Wang S, Shao M. NADPH Oxidase 4: A Potential Therapeutic Target of Malignancy. Front Cell Dev Biol. 2022;10:884412. [DOI:10.3389/fcell.2022.884412] [PMID] []
29. Carvalho DP, Dupuy C. Role of the NADPH oxidases DUOX and NOX4 in thyroid oxidative stress. Eur Thyroid J. 2013;2(3):160-7. [DOI:10.1159/000354745] [PMID] []
30. de Menezes JC. Role of NADPH Oxidase 4 in the Redox Regulation of the Sodium (Na+)/iodide (I-) Symporter in Papillary Thyroid Cancer. Université Paris Saclay (COmUE); Universidade federal do Rio de Janeiro; 2018.
31. Oglio R, Salvarredi L, Rossich L, Copelli S, Pisarev M, Juvenal G, et al. Participation of NADPH 4 oxidase in thyroid regulation. Mol Cell Endocrinol. 2019;480:65-73. [DOI:10.1016/j.mce.2018.10.012] [PMID]
32. 3Cazarin J, Dupuy C, Pires de Carvalho D. Redox Homeostasis in Thyroid Cancer: Implications in Na+/I− Symporter (NIS) Regulation. Int J Mol Sci. 2022;23(11):6129. [DOI:10.3390/ijms23116129] [PMID] []
33. Mikulska AA, Karaźniewicz-Łada M, Filipowicz D, Ruchała M, Główka FK. Metabolic characteristics of hashimoto's thyroiditis patients and the role of microelements and diet in the disease management-An overview. Int J Mol Sci. 2022;23(12):6580. [DOI:10.3390/ijms23126580] [PMID] []
34. Yontem M, Arslan S, Erdogdu BS, Kocak FE. Serum levels of oxidative stress markers in subclinical and overt hypothyroidism versus control group in population of Kutahya city, Turkey. Gomal J Med Sci. 2021;19(4):132-40. [DOI:10.46903/gjms/19.04.935]
35. Roshni PKA, Rao YD, Sowndarya K, Nandini M. Assessment of oxidative stress index in sub-clinical hypothyroidism. Biomed Pharmacol J. 2021;14:739-48. [DOI:10.13005/bpj/2177]
36. Szczepanik J, Podgórski T, Domaszewska K. The level of zinc, copper and antioxidant status in the blood serum of women with Hashimoto's thyroiditis. Int J Environ Res Public Health. 2021;18(15):7805. [DOI:10.3390/ijerph18157805] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb