Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 136-144 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabti Z S, Muhammed H J, Abu Alhab A D A. Exploring DNMT1 Polymorphism and Expression in the Hashimoto Thyroiditis Pathogenesis. rbmb.net 2025; 14 (1) :136-144
URL: http://rbmb.net/article-1-1630-en.html
Department of Forensic Science, College of Science, AL-Nahrain University, Baghdad, Iraq.
Abstract:   (293 Views)
Background: Hashimoto thyroiditis is a chronic autoimmune disorder influenced by genetic and environmental factors. DNA methylation, regulated by DNA methyltransferase 1 (DNMT1), may play a critical role in its pathogenesis. This study investigated the association between DNMT1 polymorphism, particularly rs2228611, and gene expression in Hashimoto thyroiditis patients and also compared serum levels of thyroid-stimulating hormone (TSH) and anti-thyroid peroxidase (anti-TPO) antibodies in both affected individuals and controls.

Methods: A case-control study of 100 participants (50 Hashimoto’s thyroiditis patients and 50 controls) was conducted. TSH and anti-TPO levels were measured using the enzyme-linked immunosorbent assay (ELISA). DNMT1 expression was analyzed via quantitative real time-polymerase chain reaction (qRT-PCR), while DNMT1 (rs2228611 C/T) polymorphism was assessed by high-resolution melting-polymerase chain reaction (HRM-PCR).

Results: The results revealed that Hashimoto thyroiditis patients exhibited significantly elevated serum TSH and anti-TPO levels compared to healthy controls (p < 0.0001). DNMT1 gene expression was upregulated by 1.7-fold in patients relative to controls (p = 0.04), suggesting a potential role in disease pathogenesis. Genotyping of DNMT1 rs2228611 polymorphism revealed no significant differences in allelic or genotypic frequencies between groups. However, the TT genotype showed a non-significant trend toward increased disease risk (p = 0.07). The CT genotype appeared to confer a protective effect.

Conclusions: The study’s findings suggest that elevated DNMT1 expression and thyroid dysfunction are characteristic of Hashimoto thyroiditis, while the DNMT1 rs2228611 polymorphism may have a limited but possible influence, warranting further study with larger cohorts.
Full-Text [PDF 312 kb]   (95 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2025/03/16 | Accepted: 2025/08/22 | Published: 2025/12/9

References
1. Pak S, Valencia D, Fershko A. Transformation of Hashimoto thyroiditis to Graves' disease. Res Rev Insights. 2017;1(3). [DOI:10.15761/RRI.1000117]
2. Mohammed SY, Muhammed HJ. What about The Role of miRNA125a-5p in Iraqi Patients with Autoimmune Hashimoto thyroiditis? The Egypt J Hosp Med. 2023;90(2):2500-2508. [DOI:10.21608/ejhm.2023.286032]
3. Beiramzadeh A, Heidari Z, Norouzi M, Saravani M. Association Between HOTAIR rs920778 and H19 rs3741219 Polymorphisms with Hashimoto's Thyroiditis (HT) and Graves' Disease (GD). Rep Biochem Mol Biol. 2022;11(3):377-385. [DOI:10.52547/rbmb.11.3.377] [PMID] []
4. Mikulska AA, Karaźniewicz-Łada M, Filipowicz D, Ruchała M, Główka FK. Metabolic Characteristics of Hashimoto's Thyroiditis Patients and the Role of Microelements and Diet in the Disease Management-An Overview. Int J Mol Sci. 2022;23(12):6580. [DOI:10.3390/ijms23126580] [PMID] []
5. Klubo-Gwiezdzinska J, Wartofsky L. Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132(3):16222. [DOI:10.20452/pamw.16222] [PMID] []
6. Holieva H. Мolecular Mechanisms of Pathogenesis of Autoimmune Нashimoto's Thyroiditis (Literature Review). Ukraïnsʹkij Žurnal medicini, Bìologìï Ta Sportu. 2022;7(1):292-299. [DOI:10.26693/jmbs07.01.292]
7. Sasazuki T, Inoko H, Morishima S, Morishima Y. Gene Map of the HLA Region, Graves' Disease and Hashimoto Thyroiditis, and Hematopoietic Stem Cell Transplantation. Adv Immunol. 2016;129:175-249. [DOI:10.1016/bs.ai.2015.08.003] [PMID]
8. Mikosch P, Aistleitner A, Oehrlein M, Trifina-Mikosch E. Hashimoto's thyroiditis and coexisting disorders in correlation with HLA status-an overview. Wien Med Wochenschr. 2023;173(1-2):41-53. [DOI:10.1007/s10354-021-00879-x] [PMID] []
9. Ralli M, Angeletti D, Fiore M, D'Aguanno V, Lambiase A, Artico M, et al. Hashimoto's thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649. [DOI:10.1016/j.autrev.2020.102649] [PMID]
10. Rodriguez-Reyes, D, Lugo-Vicente, H, Acosta-Julbe, J, Cruz-García, J. Hashimoto thyroiditis in pediatrics: insights into pathogenesis, diagnosis, and management with considerations of cancer risk. Med Res Arch. 2024;12(6). [DOI:10.18103/mra.v12i6.5427]
11. Dashdamirova G, Rahimova R, Baghirova S, Azizova U. Pathogenic Mechanisms of Autoimmune Thyroid Disease. International journal of medical science and health research. 2022;06(02):26-33. [DOI:10.51505/IJMSHR.2022.6203]
12. Cuan-Baltazar Y, Soto-Vega E. Microorganisms in Pathogenesis and Management of Hashimoto Thyroiditis. In: Dwivedi, M.K., Amaresan, N., Kemp, E.H., Shoenfeld, Y. (eds) Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Springer, Singapore. 2022:365-383. [DOI:10.1007/978-981-19-1946-6_15]
13. Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590-607. [DOI:10.1038/s41580-019-0159-6] [PMID]
14. Zebardast S, Sahmani M, Mohammadi S, Foroughi F, Dehghani Fard A, Mohammadi Z, et al . The Gene Expression Profile and DNA Methylation Pattern of CDH1 and DNMT1 Genes in Acute Promyelocytic Leukemia (APL). Rep Biochem Mol Biol. 2020;8(4):454-457.
15. Qassim HA, Mohammed ST, Muhamed HJ. The impact of miRNA-155 in acute and chronic toxoplasmosis in Iraqi women. Acta Tropica. 2024;255:107211. [DOI:10.1016/j.actatropica.2024.107211] [PMID]
16. Younis FQ, Alwan AH, Zaki NH. Using of TLR2 and TLR4 as Biomarker of Sepsis Severity Detection. Al-Mustansiriyah J Sci. 2018;29(2):83-92. [DOI:10.23851/mjs.v29i2.370]
17. Faris AZ, Sadoon HA, Qasim MM, Alsaedi MK, Al-Tameemi A. The Role of CD279 and CD274 Gene Polymorphisms in Iraqi Patients with Multiple Sclerosis by using Real-time qPCR HRM Technique. R J Biotechnol. 2024;19(11):237-243. [DOI:10.25303/1911rjbt2370243]
18. Qasim Mohammed M, Hussein Alwan A, Amer Almukhtar A, Kareem Aneed Al-Saedi M. Revealing of TLR-9 gene polymorphisms by qPCR HRM technique and their influence on TLR-9 serum level in acute myeloid leukemia patients: Case-control study. Cytokine. 2024;182:156730. [DOI:10.1016/j.cyto.2024.156730] [PMID]
19. Glover T, Mitchell K. An introduction to Biostatistics, 2nd ed. Waveland press. Inc; 2008.
20. Forthofer RN, Lee ES, Hernandez M. Introduction to biostatistics: a guide to design, analysis, and discovery. Elsevier;2014.
21. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-1108. [DOI:10.1038/nprot.2008.73] [PMID]
22. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174-180. [DOI:10.1016/j.autrev.2014.10.016] [PMID]
23. Abdullah YJ, Essa RH, Jumaa MG. Incidence of Hashimoto thyroiditis and its relationship to age, sex, smoking and blood groups. NTU J Pure Sci. 2022;1(2):1-9. [DOI:10.56286/ntujps.v1i2.175]
24. Omer BZ, Abdullah SMZ. Association of HLA-DRB1*04 gene with Hashimoto thyroiditis among Iraqi-Kurdish population in Erbil province. Zanco J Med Sci. 2023;27(2):184-193. [DOI:10.15218/zjms.2023.021]
25. Al-Badri MAM, Nasser IJ, Ali M. T3, T4, TSH, Anti-TPO, and Anti-TG Autoantibodies Distribution in Autoimmune Thyroid Patients with Chlamydia Trachomatis Infection. International Journal of Religion, 2024;5(1):769-77. [DOI:10.61707/9907zx61]
26. Zhao L, Zhou X, Shan X, Qi LW, Wang T, Zhu J, et al. Differential expression levels of plasma microRNA in Hashimoto's disease. Gene. 2018;642, 152-158. [DOI:10.1016/j.gene.2017.10.053] [PMID]
27. Sviridonova MA, Fadeyev VV, Sych YP, Melnichenko GA. Clinical significance of TSH circadian variability in patients with hypothyroidism. Endocr Res. 2013;38(1):24-31. [DOI:10.3109/07435800.2012.710696] [PMID]
28. Sarı E, Karaoglu A, Yeşilkaya E. Hashimoto thyroiditis in Children and Adolescents. In Fang-Ping Huang (Ed.), Autoimmune Disorders. InTech; 2011. Available from: http://dx.doi.org/10.5772/24755. [DOI:10.5772/24755]
29. Fadhil MF, Ibraheem SR, Al-Kazaz, AA. Study the association between IL-17 level and autoimmune antibodies in hypo and hyper thyroidisms patients. Iraqi J Sci. 2019;1967-1976. [DOI:10.24996/ijs.2019.60.9.9]
30. Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol. 2017;8, 521. [DOI:10.3389/fimmu.2017.00521] [PMID] []
31. Saban M, Costilla M, Klecha AJ, Di Cugno M, Curria MI, Cremaschi G, Barreiro Arcos ML. Regulation of the cellular redox state and the expression of DNA methyltransferase-1 in peripheral blood mononuclear cells from patients with Graves' disease. Endocrinol Diabetes Nutr (Engl Ed). 2022;69(6), 409-417. [DOI:10.1016/j.endien.2022.06.002] [PMID]
32. Guo Q, Wu D, Yu H, Bao J, Peng S, Shan Z, et al. Alterations of Global DNA Methylation and DNA Methyltransferase Expression in T and B Lymphocytes from Patients with Newly Diagnosed Autoimmune Thyroid Diseases After Treatment: A Follow-Up Study. Thyroid. 2018;28(3), 377-385. [DOI:10.1089/thy.2017.0301] [PMID]
33. Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM, Denver RJ. Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells. Endocrinology. 2016;157(9), 3647-3657. [DOI:10.1210/en.2015-1529] [PMID] []
34. 43rd Annual Meeting of the European Thyroid Association. Virtual Conference, September 4-7, 2021. Eur Thyroid J. 2021;10(Suppl 1):1-56. [DOI:10.1159/000517526] []
35. Arakawa Y, Watanabe M, Inoue N, Sarumaru M, Hidaka Y, Iwatani Y. Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin Exp Immunol.2012;170(2):194-201. [DOI:10.1111/j.1365-2249.2012.04646.x] [PMID] []
36. Cai TT, Zhang J, Wang X, Song RH, Qin Q, Muhali FS, et al. Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmune thyroid disease. Endocr J. 2016;63(7), 643-653. [DOI:10.1507/endocrj.EJ15-0596] [PMID]
37. Ping J, Wan J, Huang C, Yu J, Luo J, Xing Z, et al. DNMT1 SNPs (rs2114724 and rs2228611) associated with positive symptoms in Chinese patients with schizophrenia. Ann Gen Psychiatry. 2023;22(1), 40. [DOI:10.1186/s12991-023-00466-x] [PMID] []
38. Kaušylaitė MM, Jurevičė J, Korobeinikova E, Gudaitienė J, Juozaitytė E, Ugenskienė R. DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis. Medicina (Kaunas). 2024;60(11):1902. [DOI:10.3390/medicina60111902] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb