Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 38-45 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibi M, Mahmoudi F, Haghighat K, khazali H. Therapeutic Effects of Phytoestrogen Naringenin in Polycystic Ovary Syndrome (PCOS): Involvement of Kisspeptin and Calcitonin Gene Related Peptide Signalling Pathways. rbmb.net 2025; 14 (1) :38-45
URL: http://rbmb.net/article-1-1650-en.html
Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
Abstract:   (724 Views)
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder and a major cause of infertility in women. Although studies have reported the effects of naringenin on PCOS; the underlying molecular mechanisms remain unclear. This study aimed to investigate the effect of naringenin on the expression of kisspeptin (Kiss1) and calcitonin gene-related peptide (Cgrp) genes in a rat model of PCOS.

Methods: Twenty female rats (180–200 g) were used in this study. To PCOS induction, two mg of estradiol valerate was injected intramuscularly (IM) per rat. The control and PCOS groups received saline, while the other two groups were treated intraperitoneally with naringenin at either 20 mg/kg or 50 mg/kg, respectively. Subsequently, hypothalamic tissue was collected, and gene expression levels were analyzed using real-time PCR.

Results: The expression Kiss1 and Cgrp genes increased significantly in the PCOS group contrasted to the control (p≤ 0/05). In the groups treated with naringenin, the levels of Kiss1 and Cgrp gene expression reduced significantly compared to the PCOS group (p≤ 0/05).

Conclusion: Naringenin may ameliorate PCOS by downregulating hypothalamic Kiss1 and Cgrp gene expression in rats. These results suggest a novel mechanism of naringenin’s action and highlight its potential for clinical application.
Full-Text [PDF 291 kb]   (392 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2025/04/29 | Accepted: 2025/06/29 | Published: 2025/12/9

References
1. Haghighat Gollo K, Mahmoudi F, Bayrami A, Zahri S. The Effects of L-dopa, SCH23390 Hydrochloride and Sulpiride on Adiponectin and Luteinizing Hormone Levels in an Animal Model of Polycystic Ovary Syndrome. J Arak Uni Med Sci. 2020; 23 (2) :162-171. [DOI:10.32598/JAMS.23.2.5015.1]
2. Ali SE, El Badawy SA, Elmosalamy SH, Emam SR, Azouz AA, Galal MK, et al. Novel promising reproductive and metabolic effects of Cicer arietinum L. extract on letrozole induced polycystic ovary syndrome in rat model. J Ethnopharmacol. 2021; 278:114318. [DOI:10.1016/j.jep.2021.114318] [PMID]
3. Sadeghzadeh A, Bayrami A, Mahmoudi F, Khazali H, Asadi A. The effects of interaction of dopaminergic and kisspeptin neural pathways on ghrelin secretion in rats. Arch Adv BioSci. 2018. 9(1): 29-35.
4. D'Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod. 2020;103(6):1157-70. [DOI:10.1093/biolre/ioaa135] [PMID] []
5. Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol. 2022; 317:113973. [DOI:10.1016/j.ygcen.2021.113973] [PMID]
6. Sun P, Zhang Y, Sun L, Sun N, Wang J, Ma H. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC public health. 2023;23(1):15. [DOI:10.1186/s12905-022-02154-6] [PMID] []
7. Tang R, Ding X, Zhu J. Kisspeptin and polycystic ovary syndrome. Front Endocrinol. 2019; 10;10:298. [DOI:10.3389/fendo.2019.00298] [PMID] []
8. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099-142. [DOI:10.1152/physrev.00034.2013] [PMID] []
9. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev. 2023;103(2):1565-644. [DOI:10.1152/physrev.00059.2021] [PMID] []
10. Kinsey‐Jones JS, Li XF, Bowe JE, Brain SD, Lightman SL, O'Byrne KT. Effect of calcitonin gene‐related peptide on gonadotrophin‐releasing hormone mRNA expression in GT1‐7 cells. J Neuroendocrinol. 2005;17(9):541-4. [DOI:10.1111/j.1365-2826.2005.01341.x] [PMID]
11. Zhang Z, Gong F, Lu GX. Plasma level of calcitonin gene-related peptide in patients with polycystic ovary syndrome and its relationship to hormonal and metabolic parameters. Peptides. 2012;34(2):343-8. [DOI:10.1016/j.peptides.2012.01.018] [PMID]
12. Arafah A, Rehman MU, Mir TM, Wali AF, Ali R, Qamar W, et al. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): experimental evidence and mechanisms. Plants. 2020 16;9(12):1784. [DOI:10.3390/plants9121784] [PMID] []
13. Saremi F, Sabet FP, Nabiee K, Tolouei F, Kouchaki K, Yasami M, et al. Effects of Naringenin (NG) as an anti-proliferative and anti-apoptotic factor on ER alpha and ER beta in PCOS. Adv Biomed Res. 2025;14(1):63. [DOI:10.4103/abr.abr_457_24] [PMID] []
14. Zhang L, Lu RR, Xu RH, Wang HH, Feng WS, Zheng XK. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors. Heliyon. 2023;9(5). [DOI:10.1016/j.heliyon.2023.e15618] [PMID] []
15. Haghighat Gollo K Mahmoudi F, Bayrami A, Zahri S. Influences of L-DOPA and Blocking Dopamine Receptors on Aromatase Gene Expression and Serum Concentration of LH in Rat Model of Polycystic Ovary Syndrome. J Adv biomed Sci. 2020;10(3):2448-55.
16. Feyzollahi Z, Mohseni Kouchesfehani H, Jalali H, Eslimi-Esfahani D, Sheikh Hosseini A. Effect of Vitex agnus-castus ethanolic extract on hypothalamic KISS-1 gene expression in a rat model of polycystic ovary syndrome. Avicenna J Phytomed. 2021;11(3):292-301.
17. Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin neurons: integral elements of the GnRH system. Reprod Sci. 2023;30(3):802-22. [DOI:10.1007/s43032-022-01027-5] [PMID]
18. Wen JP, Liu C, Bi WK, Hu YT, Chen Q, Huang H, et al. Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons. J Endocrine. 2012;214(2):177-89. [DOI:10.1530/JOE-12-0054] [PMID]
19. Cheng XB, Wen JP, Yang J, Yang Y, Ning G, Li XY. GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine. 2011; 39(1):6-12. [DOI:10.1007/s12020-010-9375-8] [PMID]
20. Bannigida DM, Nayak SB. Serum visfatin and adiponectin-markers in women with polycystic ovarian syndrome. Arch Biochem Biophys. 2020;126(4):283-6. [DOI:10.1080/13813455.2018.1518987] [PMID]
21. Horiba T, Nishimura I, Nakai Y, Abe K, Sato R. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cell Endocrinol. 2010; 323(2):208-14. [DOI:10.1016/j.mce.2010.03.020] [PMID]
22. Barajas-Vega JL, Raffoul-Orozco AK, Hernandez-Molina D, Ávila-González AE, García-Cobian TA, Rubio-Arellano ED, Ramirez-Lizardo EJ. Naringin reduces body weight, plasma lipids and increases adiponectin levels in patients with dyslipidemia. Int J Vitam Nutr Res. 2020; 92(3-4):292-298. [DOI:10.1024/0300-9831/a000658] [PMID]
23. Pan T, Lee YM, Takimoto E, Ueda K, Liu PY, Shen HH. Inhibitory effects of naringenin on estrogen deficiency-induced obesity via regulation of mitochondrial dynamics and AMPK activation associated with white adipose tissue browning. Life Sci. 2024; 340:122453. [DOI:10.1016/j.lfs.2024.122453] [PMID]
24. Pellegrini M, Bulzomi P, Galluzzo P, Lecis M, Leone S, Pallottini V, Marino M. Naringenin modulates skeletal muscle differentiation via estrogen receptor α and β signal pathway regulation. Genes Nutr. 2014; 9(5):425. [DOI:10.1007/s12263-014-0425-3] [PMID] []
25. Karaca E, Yarim M. Naringenin stimulates aromatase expression and alleviates the clinical and histopathological findings of experimental autoimmune encephalomyelitis in C57bl6 mice. Folia Histochem Cell Biol. 2023;160(5):477-90. [DOI:10.1007/s00418-023-02217-1] [PMID]
26. Iwata K, Ikehara M, Kunimura Y, Ozawa H. Interactions between kisspeptin neurons and hypothalamic tuberoinfundibular dopaminergic neurons in aged female rats. J Histochem Cytochem. 2016;49(6):191-6. [DOI:10.1267/ahc.16027] [PMID] []
27. Ciechanowska M, Łapot M, Paruszewska E, Radawiec W, Przekop F. The influence of dopaminergic system inhibition on biosynthesis of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in anoestrous sheep; hierarchical role of kisspeptin and RFamide-related peptide-3 (RFRP-3). Reprod Fertil Dev. 2018;30(4):672-80. [DOI:10.1071/RD16309] [PMID]
28. Goodman RL, Maltby MJ, Millar RP, Hileman SM, Nestor CC, Whited B, Tseng AS, Coolen LM, Lehman MN. Evidence that dopamine acts via kisspeptin to hold GnRH pulse frequency in check in anestrous ewes. Endocrinology. 2012;153(12):5918-27. [DOI:10.1210/en.2012-1611] [PMID] []
29. Fenkci SM, Fenkci V, Oztekin O, Rota S. Serum calcitonin gene-related peptide levels in women with polycystic ovary syndrome. Arch Gynecol Obstet. 2013;287(6):1235-9. [DOI:10.1007/s00404-012-2689-4] [PMID]
30. Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol med. 2021;25(4):1825-37. [DOI:10.1111/jcmm.16205] [PMID] []
31. Krishna A, Al Rifai A, Hubner B, Rother P, Spanel-Borowski K. Increase in calcitonin gene related peptide (CGRP) and decrease in mast cells in dihydroepiandrosterone (DHEA)-induced polycystic rat ovaries. Anat Embryol. 2001; 203:375-82. [DOI:10.1007/s004290100165] [PMID]
32. Armayanti LY, Wulansari NT. Regulation of sex steroid sex hormones on calcitonin gene-related peptide (CGRP)'s mRNA expression in vaginal mucosa epitel of bilateral ovarectomized Wistar rats. Biomed Pharmacol J. 2020; 13(1): 263-268. [DOI:10.13005/bpj/1885]
33. Li XF, Kinsey-Jones JS, Bowe JE, Wilkinson ES, Brain SD, Lightman SL, O'Byrne KT. A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress. 2009;12(3):259-67. [DOI:10.1080/10253890802379922] [PMID]
34. Rashid R, Tripathi R, Singh A, Sarkar S, Kawale A, Bader GN, et al. Naringenin improves ovarian health by reducing the serum androgen and eliminating follicular cysts in letrozole‐induced polycystic ovary syndrome in the Sprague Dawley rats. Phytother Res. 2023;37(9):4018-41. [DOI:10.1002/ptr.7860] [PMID]
35. Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci. 2014; 8:387. [DOI:10.3389/fnins.2014.00387] [PMID] []
36. McIntyre C, Li XF, Ivanova D, Wang J, O'Byrne KT. Hypothalamic PVN CRH neurons signal through PVN GABA neurons to suppress GnRH pulse generator frequency in female mice. Endocrinology. 2023;164(6): bqad075. [DOI:10.1210/endocr/bqad075] [PMID] []
37. Bourgoin S, Pohl M, Benoliel JJ, Mauborgne A, Collin E, Hamon M. γ-Aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related peptide-but not that of substance P-like material from rat spinal cord slices. Brain Res. 1992 26;583(1-2):344-8. [DOI:10.1016/S0006-8993(10)80048-4] [PMID]
38. Lu YC, Chen YZ, Wei YY, He XT, Li X, Hu W, et al. Neurochemical properties of the synapses between the parabrachial nucleus-derived CGRP-positive axonal terminals and the GABAergic neurons in the lateral capsular division of central nucleus of amygdala. Mol Neurobiol. 2015; 51(10):105-18. [DOI:10.1007/s12035-014-8713-x] [PMID]
39. Park SA, Nguyen TT, Park SJ, Han SK. Naringenin modulates GABA mediated response in a sex-dependent manner in substantia gelatinosa neurons of trigeminal subnucleus caudalis in immature mice. Korean J Physiol Pharmacol. 2024; 28(1):73-81. [DOI:10.4196/kjpp.2024.28.1.73] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb