Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 145-154 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Savari F, Mard S A, Rezaie A, Kalantar M. Effect of Zinc Oxide Nanoparticles on Hepatic Ischemia-Reperfusion Injury: Role of miR-125b Expression in Possible Underlying Mechanisms. rbmb.net 2025; 14 (1) :145-154
URL: http://rbmb.net/article-1-1672-en.html
Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
Abstract:   (283 Views)
Background: This study examined the protective effects of zinc oxide nanoparticles (ZnO-NPs) on hepatic ischemia-reperfusion injury (HIRI) and their possible underlying mechanisms.

Methods: 48 male rats were randomly divided into six groups (n=8): the sham group that received intraperitoneal normal saline solution (Sham), the HIRI group, the control groups pre-treated with 5 and 10 mg/kg ZnO-NPs for 3 consecutive days without surgery (ZnO5) and (ZnO10), the HIRI group pre-treated with 5 mg/kg ZnO-NPs for 3 consecutive days before surgery (HIRI+ZnO5), and the HIRI group pre-treated with 10 mg/kg ZnO-NPs for 3 consecutive days before surgery (HIRI+ZnO10). One hour after reperfusion, serum and tissue samples were collected for biochemical, molecular and histopathological evaluation.

Results: Administration of ZnO-NPs caused significant improvement in the elevated serum concentrations of ALT, AST, TOS and MDA, improved liver histopathology, and increased TNF-α, IL-6, and NF-κB levels in liver tissue compared to HIRI group. In addition, administration of ZnO-NPs increased the expression of miR-125 in liver tissue compared than in the HIRI group.

Conclusion: The administration of ZnO-NPs improved the effect on HIRI by enhancing miR-125b expression and suppressing oxidative stress and inflammatory cytokines.
Full-Text [PDF 437 kb]   (73 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2025/05/22 | Accepted: 2025/10/19 | Published: 2025/12/9

References
1. Nakamura K, Kageyama S, Kupiec-Weglinski JW. The Evolving Role of Neutrophils in Liver Transplant Ischemia-Reperfusion Injury. Curr Transplant Rep. 2019;6(1):78-89. [DOI:10.1007/s40472-019-0230-4] [PMID] []
2. Hudcova J, Scopa C, Rashid J, Waqas A, Ruthazer R, Schumann R. Effect of early allograft dysfunction on outcomes following liver transplantation. Clin Transplant. 2017;31(2). [DOI:10.1111/ctr.12887] [PMID]
3. Banga NR, Homer-Vanniasinkam S, Graham A, Al-Mukhtar A, White SA, Prasad KR. Ischaemic preconditioning in transplantation and major resection of the liver. Br J Surg. 2005;92(5):528-38. [DOI:10.1002/bjs.5004] [PMID]
4. Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am. 2010;90(4):665-77. [DOI:10.1016/j.suc.2010.04.003] [PMID]
5. Defamie V, Cursio R, Le Brigand K, Moreilhon C, Saint-Paul MC, Laurens M, et al. Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function. Am J Transplant. 2008;8(6):1221-36. [DOI:10.1111/j.1600-6143.2008.02249.x] [PMID]
6. Zheng W, Men H, Li J, Xing Y, Wu B, Wang Z, et al. Global MicroRNA Expression Profiling of Mouse Livers following Ischemia-Reperfusion Injury at Different Stages. PLoS One. 2016;11(2):e0148677. [DOI:10.1371/journal.pone.0148677] [PMID] []
7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. [DOI:10.1016/S0092-8674(04)00045-5] [PMID]
8. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351-79. [DOI:10.1146/annurev-biochem-060308-103103] [PMID]
9. Huang Z, Zheng D, Pu J, Dai J, Zhang Y, Zhang W, Wu Z. MicroRNA-125b protects liver from ischemia/ reperfusion injury via inhibiting TRAF6 and NF-κB pathway. Biosci Biotechnol Biochem. 2019;83(5):829-835. [DOI:10.1080/09168451.2019.1569495] [PMID]
10. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179(8):5082-9. [DOI:10.4049/jimmunol.179.8.5082] [PMID]
11. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23(7):862-76. [DOI:10.1101/gad.1767609] [PMID] []
12. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33 Suppl 1:S57-70. [DOI:10.1016/j.ijsu.2016.05.050] [PMID]
13. Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng. 2020;6(12):6528-6539. [DOI:10.1021/acsbiomaterials.0c01197] [PMID]
14. Dhawan DK, Chadha VD. Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res. 2010;132(6):676-82.
15. Afifi M, Abdelazim AM. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed. 2015;5(10):874-7. [DOI:10.1016/j.apjtb.2015.06.010]
16. Mohseni Kouchesfahani H, Ostadbagher Kashi A. The protective effect of ZnO nanoparticles on liver and impairments induced by Paclitaxel treatment in female Wistar rat. Nova Biologica Reperta. 2016;3(3):218-27. [DOI:10.21859/acadpub.nbr.3.3.218]
17. Jafar Sameri M, Savari F, Mard SA, Rezaie A, Kalantar M. Zinc Oxide Nanoparticles Ameliorate Histological Alterations Through Apoptotic Gene Regulation in Rat Model of Liver Ischemia-Reperfusion Injury. Rep Biochem Mol Biol. 2024;12(4):619-630. [DOI:10.61186/rbmb.12.4.619] [PMID] []
18. Chang HJ, Choi SW, Ko SH, Chun H-S. Effect of particle size of zinc oxides on cytotoxicity and cell permeability in Caco-2 cells. Preventive Nutrition and Food Science. 2011;16(2):174-8. [DOI:10.3746/jfn.2011.16.2.174]
19. Akbari G, Savari F, Mard SA, Rezaie A, Moradi M. Gallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions. Iran J Basic Med Sci. 2019;22(4):439-444.
20. Mard SA, Akbari G, Mansouri E, Parsanahad M. Renoprotective effect of crocin following liver ischemia/ reperfusion injury in Wistar rats. Iran J Basic Med Sci. 2017;20(10):1172-1177. [DOI:10.1155/2017/1702967] [PMID] []
21. Draper H, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods in enzymology. 186: Elsevier; 1990:421-31. [DOI:10.1016/0076-6879(90)86135-I] [PMID]
22. He D, Guo Z, Pu JL, Zheng DF, Wei XF, Liu R, et al. Resveratrol preconditioning protects hepatocytes against hepatic ischemia reperfusion injury via Toll-like receptor 4/nuclear factor-κB signaling pathway in vitro and in vivo. Int Immunopharmacol. 2016;35:201-209. [DOI:10.1016/j.intimp.2016.03.032] [PMID]
23. Emly M, Rochester P. A new look at constipation management in the community. Br J Community Nurs. 2006;11(8):326, 328-32. [DOI:10.12968/bjcn.2006.11.8.21664] [PMID]
24. Zhang Y, Lei X, Li W, Ding X, Bai J, Wang J, Wu G. TNIP1 alleviates hepatic ischemia/reperfusion injury via the TLR2-Myd88 pathway. Biochem Biophys Res Commun. 2018;501(1):186-192. [DOI:10.1016/j.bbrc.2018.04.209] [PMID]
25. Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1083-8. [DOI:10.1152/ajpgi.00568.2005] [PMID]
26. Zhang S, Cao Y, Xu B, Zhang H, Zhang S, Sun J, et al. An antioxidant nanodrug protects against hepatic ischemia-reperfusion injury by attenuating oxidative stress and inflammation. J Mater Chem B. 2022;10(37):7563-7569. [DOI:10.1039/D1TB02689E] [PMID]
27. Rajesh M, Pan H, Mukhopadhyay P, Bátkai S, Osei-Hyiaman D, Haskó G, et al. Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol. 2007;82(6):1382-9. [DOI:10.1189/jlb.0307180] [PMID] []
28. Du Y, Qian B, Gao L, Tan P, Chen H, Wang A, et al. Aloin Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury via Inhibiting TLR4/MyD88/NF-κB Signal Pathway In Vivo and In Vitro. Oxid Med Cell Longev. 2019;2019:3765898. [DOI:10.1155/2019/3765898] [PMID] []
29. Zhang CB, Tang YC, Xu XJ, Guo SX, Wang HZ. Hydrogen gas inhalation protects against liver ischemia/reperfusion injury by activating the NF-κB signaling pathway. Exp Ther Med. 2015;9(6):2114-2120. [DOI:10.3892/etm.2015.2385] [PMID] []
30. Li H, Sun JJ, Chen GY, Wang WW, Xie ZT, Tang GF, Wei SD. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice. Biomed Pharmacother. 2016;82:237-46. [DOI:10.1016/j.biopha.2016.04.064] [PMID]
31. Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother. 2020;129:110419. [DOI:10.1016/j.biopha.2020.110419] [PMID]
32. Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of Immuno-Inflammatory Signals in Liver Ischemia-Reperfusion Injury. Cells. 2022;11(14):2222. [DOI:10.3390/cells11142222] [PMID] []
33. Hassan Alsayes SA, Aziza SA, Abo Zaid OR, Abdel-Aziz GA. Wound healing treatment of local insulin injection with topical chitosan/Zinc oxide nanocomposite membrane in diabetic rats model. Benha Vet Med J. 2022;42(2):70-5. https://doi.org/10.21608/bvmj.2022.147886.1541 https://doi.org/10.21608/bvmj.2022.147887.1542 [DOI:10.21608/bvmj.2022.148169.1547]
34. Abdulmalek S, Nasef M, Awad D, Balbaa M. Protective Effect of Natural Antioxidant, Curcumin Nanoparticles, and Zinc Oxide Nanoparticles against Type 2 Diabetes-Promoted Hippocampal Neurotoxicity in Rats. Pharmaceutics. 2021;13(11):1937. [DOI:10.3390/pharmaceutics13111937] [PMID] []
35. Awadalla A, Hussein AM, El-Far YM, Barakat N, Hamam ET, El-Sherbiny M, et al. Effect of zinc oxide nanoparticles and ferulic acid on renal ischemia/reperfusion injury: possible underlying mechanisms. Biomed Pharmacother. 2021;140:111686. [DOI:10.1016/j.biopha.2021.111686] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb