Volume 14, Issue 1 (Vol.14 No.1 Apr 2025)                   rbmb.net 2025, 14(1): 85-94 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Izadi A, Zarourati A, Boozarpour S, Ghalandar M, Lashkarboloki M, Momeni Moghaddam M et al . Metformin Increased Histone Deacetylases 1, 3, and 8 Expressions as Epigenetic Regulators in Type 2 Diabetic Patients. rbmb.net 2025; 14 (1) :85-94
URL: http://rbmb.net/article-1-1692-en.html
Department of Biology, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran.
Abstract:   (680 Views)
Background: Type 2 diabetes is a complex disease resulting from interactions between genetic, epigenetic, and environmental factors. Histone deacetylases (HDAC) are essential epigenetic-regulatory enzymes that affect gene expression and, through metabolic homeostasis and beta-cell function regulation, play significant roles in the development and treatment of diabetes. In this study, we specifically focused on the effect of metformin, the first-line therapy for type 2 diabetes on the expression of class I HDAC genes.

Methods: A total of 60 patients were equally allocated into two groups: those receiving metformin treatment and those without treatment. Also, 60 subjects with normal glucose tolerance were divided into two groups: non-obese (n=30) and obese individuals (n=30). All biochemical and clinical factors were estimated using standard methods, and RT-qPCR was used to quantify the expression levels of the candidate genes in peripheral blood mononuclear cells of different groups.

Results: The metformin treatment group exhibited increased expression of HDAC1, HDAC3, and HDAC8 in comparison to the non-treatment group. Furthermore, the expression levels of HDAC 1, 2, and 3 were higher in the obese group than the non-obese. Interestingly, evaluation of biochemical and clinical factors revealed significant association between the expression of class I HDAC genes and several diabetes-related risk factors.

Conclusions: The current findings suggest that HDAC1, 3, and 8 genes expression are affected by metformin, and obesity has a substantial ability to increase the risk of diabetes. However, changes in HDAC expression may represent potential biomarkers and therapeutic targets for future clinical studies in diabetes, particularly in exploring combination therapies involving histone deacetylase inhibitors and metformin.
Full-Text [PDF 339 kb]   (368 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2025/06/4 | Accepted: 2025/10/14 | Published: 2025/12/9

References
1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2):88-98. [DOI:10.1038/nrendo.2017.151] [PMID]
2. Nanda M, Sharma R, Mubarik S, Aashima A, Zhang K. Type-2 Diabetes Mellitus (T2DM): spatial-temporal patterns of incidence, mortality and attributable risk factors from 1990 to 2019 among 21 world regions. Endocrine. 2022;77(3):444-454. [DOI:10.1007/s12020-022-03125-5] [PMID]
3. Baynes HW. Classification, pathophysiology, diagnosis and management of diabetes mellitus. J diabetes metab. 2015; 6(5):1-9.
4. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228-236. [DOI:10.1038/nrendo.2011.183] [PMID]
5. Arab Sadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, Mohagheghi S, Tayebinia H, Mohseni R. Palmitate-increased TGF-β1 Gene Expression and p-Smad2/3 Protein Levels Attenuated by Chicoric Acid in Patients with Type 2 Diabetes Mellitus. Rep Biochem Mol Biol. 2025;13(4):540-548. [DOI:10.61882/rbmb.13.4.540] [PMID] []
6. Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028-1044. [DOI:10.1016/j.cmet.2019.03.009] [PMID] []
7. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 2014;10(3):469-78. [DOI:10.4103/0973-1482.137937] [PMID]
8. Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005;21(5):416-33. [DOI:10.1002/dmrr.559] [PMID]
9. Serebryannyy LA, Cruz CM, de Lanerolle P. A Role for Nuclear Actin in HDAC 1 and 2 Regulation. Sci Rep. 2016;6:28460. [DOI:10.1038/srep28460] [PMID] []
10. Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res. 2016;113(Pt A):320-326. [DOI:10.1016/j.phrs.2016.09.009] [PMID]
11. Wang X, Wei X, Pang Q, Yi F. Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus. Acta Pharmaceutica Sinica B. 2012; 2(4):387-395. [DOI:10.1016/j.apsb.2012.06.005]
12. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011;145(4):607-21. [DOI:10.1016/j.cell.2011.03.043] [PMID] []
13. Makkar R, Behl T, Arora S. Role of HDAC inhibitors in diabetes mellitus. Curr Res Transl Med. 2020;68(2):45-50. [DOI:10.1016/j.retram.2019.08.001] [PMID]
14. Aroda VR, Ratner RE. Metformin and Type 2 Diabetes Prevention. Diabetes Spectr. 2018;31(4):336-342. [DOI:10.2337/ds18-0020] [PMID] []
15. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167-74. [DOI:10.1172/JCI13505] [PMID] []
16. Lin SC, Hardie DG. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab. 2018;27(2):299-313. [DOI:10.1016/j.cmet.2017.10.009] [PMID]
17. Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015;6(1):87-123. [DOI:10.3390/genes6010087] [PMID] []
18. Dalvand S, Namdari A, Sepahvand F, Meshkibaf MH, Ahmadpour G. Investigation of Decitabine Effects on HDAC3 and HDAC7 mRNA Expression in NALM-6 and HL-60 Cancer Cell Lines. Rep Biochem Mol Biol. 2021;10(3):420-428 [DOI:10.52547/rbmb.10.3.420] [PMID] []
19. Bagchi D, Nair S. Nutritional and therapeutic interventions for diabetes and metabolic syndrome: Academic Press; 2018.
20. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol. 2009;297(3):F729-39. [DOI:10.1152/ajprenal.00086.2009] [PMID]
21. Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, et al. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med. 2011;17(5-6):378-90. [DOI:10.2119/molmed.2011.00021] [PMID] []
22. Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol. 2018;16:332-343. [DOI:10.1016/j.redox.2018.03.011] [PMID] []
23. Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med. 2012;18(6):934-42. [DOI:10.1038/nm.2744] [PMID] []
24. Zeng Z, Liao R, Yao Z, Zhou W, Ye P, Zheng X, et al. Three single nucleotide variants of the HDAC gene are associated with type 2 diabetes mellitus in a Chinese population: a community-based case-control study. Gene. 2014;533(1):427-33. [DOI:10.1016/j.gene.2013.09.123] [PMID]
25. Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, et al. Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics. 2016;8:125. [DOI:10.1186/s13148-016-0293-3] [PMID] []
26. Tian Y, Wong VW, Wong GL, Yang W, Sun H, Shen J, et al. Histone Deacetylase HDAC8 Promotes Insulin Resistance and β-Catenin Activation in NAFLD-Associated Hepatocellular Carcinoma. Cancer Res. 2015;75(22):4803-16. [DOI:10.1158/0008-5472.CAN-14-3786] [PMID]
27. Lee Y, Yi HS, Kim HR, Joung KH, Kang YE, Lee JH, et al. The Eosinophil Count Tends to Be Negatively Associated with Levels of Serum Glucose in Patients with Adrenal Cushing Syndrome. Endocrinol Metab (Seoul). 2017;32(3):353-359. [DOI:10.3803/EnM.2017.32.3.353] [PMID] []
28. Ahmadi S, Boozarpour S, Sabouri H, Ghalandarayeshi S, Babaee N, Lashkarboloki M,Banikarimi SA. Expression of circulating long non-coding MALAT1 and GAS5 under metformin treatment in type 2 diabetic patients. Gene Rep.2024;35:101905. [DOI:10.1016/j.genrep.2024.101905]
29. Bridgeman SC, Ellison GC, Melton PE, Newsholme P, Mamotte CDS. Epigenetic effects of metformin: From molecular mechanisms to clinical implications. Diabetes Obes Metab. 2018;20(7):1553-1562. [DOI:10.1111/dom.13262] [PMID]
30. Jiang T, Xie L, Zhou S, Liu Y, Huang Y, Mei N, et al. Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. J Nanobiotechnology. 2022;20(1):394. [DOI:10.1186/s12951-022-01592-6] [PMID] []
31. Szymczak-Pajor I, Drzewoski J, Świderska E, Strycharz J, Gabryanczyk A, Kasznicki J, et al. Metformin Induces Apoptosis in Human Pancreatic Cancer (PC) Cells Accompanied by Changes in the Levels of Histone Acetyltransferases (Particularly, p300/CBP-Associated Factor (PCAF) Protein Levels). Pharmaceuticals (Basel). 2023;16(1):115. [DOI:10.3390/ph16010115] [PMID] []
32. Abbasi A, Juszczyk D, van Jaarsveld CHM, Gulliford MC. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J Endocr Soc. 2017;1(5):524-537. [DOI:10.1210/js.2017-00044] [PMID] []
33. Wainberg M, Mahajan A, Kundaje A, McCarthy MI, Ingelsson E, Sinnott-Armstrong N, Rivas MA. Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: A Mendelian randomization study. PLoS Med. 2019;16(12):e1002982. [DOI:10.1371/journal.pmed.1002982] [PMID] []
34. Yan Z, Cai M, Han X, Chen Q, Lu H. The Interaction Between Age and Risk Factors for Diabetes and Prediabetes: A Community-Based Cross-Sectional Study. Diabetes Metab Syndr Obes. 2023;16:85-93. [DOI:10.2147/DMSO.S390857] [PMID] []
35. Escobedo-de la Peña J, Ramírez-Hernández JA, Fernández-Ramos MT, González-Figueroa E, Champagne B. Body Fat Percentage Rather than Body Mass Index Related to the High Occurrence of Type 2 Diabetes. Arch Med Res. 2020;51(6):564-571. [DOI:10.1016/j.arcmed.2020.05.010] [PMID]
36. Ali HH, Al-Rawi K, Khalaf Y, Alaaraji S, Aldahham B, Awad M, et al. Serum Caveolin-1 Level is Inversely Associated with Serum Vaspin, Visfatin, and HbA1c in Newly Diagnosed Men with Type-2 Diabetes. Rep Biochem Mol Biol. 2022;11(2):299-309. [DOI:10.61186/rbmb.11.2.299] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb