Vol.9 No.1 Apr                   Back to the articles list | Back to browse issues page


XML Print


Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
Abstract:   (98 Views)
Background: Immunotherapy of cancer by bispecific antibodies (bsAb) is an attractive approach for retargeting immune effector cells including natural killer (NK) cells to the tumor if the proper expression and purification of the bsAb for such applications could be addressed. Herein, we describe E. coli expression of a recombinant bsAb (bsHN-CD16) recognizing NK-CD16 and hemagglutinin neuraminidase (HN) of Newcastle Disease Virus (NDV). This bsAb might be efficient for ex vivo stimulation of NK cells via coupling to HN on the surface of the NDV-infected tumor cells.

Methods: A bsAb-encoding pcDNA3.1 vector (anti-HN scFv-Fc-anti-CD16 scFv) was used as a template, and the scFv segments (after enzymatic digestion and cutting of the Fc part) were rejoined to construct the Fc-deprived bsAb (anti-HN scFv-anti-CD16 scFv; bsHN-CD16). The constructed bsHN-CD16 was inserted into the HindIII and BamHI site of the T7 promoter-based pET28a plasmid. Following restriction analyses and DNA sequencing to confirm the cloning steps, bsHN-CD16 encoding pET28a was transformed into the E. coli (Rosetta DE3 strain), induced for protein expression by IPTG, and the protein was purified under native condition by Ni/NTA column using imidazole.

Results: Analyses by SDS-PAGE and Western Blotting using Rabbit anti-human whole IgG-HRP conjugate, confirmed the expression and purification of the bsAb with the expected full size of 55 kDa and yields around 8% of the total protein.

Conclusions: Results showed efficient production of the bsAb in E. coli for future large-scale purification.
Full-Text [PDF 274 kb]   (58 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2019/08/11 | Accepted: 2019/08/19 | Published: 2020/05/19

References
1. International Agency for Research on Cancer. Globocan. Available from: http://gco.iarc.fr/today
2. Colucci F, Caligiuri MA, Di Santo JP. What does it take to make a natural killer?. Nat Rev Immunol. 2003;3(5):413-25. [DOI:10.1038/nri1088]
3. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503-10. [DOI:10.1038/ni1582]
4. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 2000; 25;356(9244):1795-9. [DOI:10.1016/S0140-6736(00)03231-1]
5. Moon WY, Powis SJ. Does Natural Killer Cell Deficiency (NKD) Increase the Risk of Cancer? NKD May Increase the Risk of Some Virus Induced Cancer. Front Immunol. 2019;10:1703. [DOI:10.3389/fimmu.2019.01703]
6. Jobin G, Rodriguez-Suarez R, Betito K. Association Between Natural Killer Cell Activity and Colorectal Cancer in High-Risk Subjects Undergoing Colonoscopy. Gastroenterology. 2017;153(4):980-987. [DOI:10.1053/j.gastro.2017.06.009]
7. Sabry M, Lowdell MW. Tumor-primed NK cells: Waiting for the green light. Front Immunol. 2013;4:408. [DOI:10.3389/fimmu.2013.00408]
8. Fauriat C, Mallet F, Olive D, Costello RT. Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia. 2006;20(4):732-3. [DOI:10.1038/sj.leu.2404096]
9. Reiners KS, Kessler J, Sauer M, Rothe A, Hansen HP, Reusch U, et al. Rescue of Impaired NK Cell Activity in Hodgkin Lymphoma with Bispecific Antibodies In Vitro and in Patients. Mol Ther. 2013;21(4):895-903. [DOI:10.1038/mt.2013.14]
10. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7(5):329-39. [DOI:10.1038/nri2073]
11. Mullard A. Bispecific antibody pipeline moves beyond oncology. Nat Rev Drug Discov. 2017;16(10):666-668. [DOI:10.1038/nrd.2017.187]
12. Müller D, Kontermann RE. Bispecific Antibodies. Handb Ther Antibodies (2nd Ed). 2015;1-4(7):265-310. [DOI:10.1002/9783527682423.ch11]
13. Schmohl JU, Felices M, Taras E, Miller JS, Vallera DA. Enhanced ADCC and NK cell activation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol Ther. 2016;24(7):1312-22. [DOI:10.1038/mt.2016.88]
14. Wiernik A, Foley B, Zhang B, Verneris MR, Warlick E, Gleason MK, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16×33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res. 2013;19(14):3844-55. [DOI:10.1158/1078-0432.CCR-13-0505]
15. Schirrmacher V, Fournier P. Newcastle Disease Virus: A Promising Vector for Viral Therapy, Immune Therapy, and Gene Therapy of Cancer. Methods Mol Biol. 2009;542:565-605. [DOI:10.1007/978-1-59745-561-9_30]
16. Haas C, Lulei M, Fournier P, Arnold A, Schirrmacher V. A tumor vaccine containing anti-CD3 and anti-CD28 bispecific antibodies triggers strong and durable antitumor activity in human lymphocytes. Int J Cancer. 2006;118(3):658-67. [DOI:10.1002/ijc.21390]
17. Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, et al. Bispecific and Trispecific Killer Cell Engagers Directly Activate Human NK Cells through CD16 Signaling and Induce Cytotoxicity and Cytokine Production. Mol Cancer Ther. 2012;11(12):2674-84. [DOI:10.1158/1535-7163.MCT-12-0692]
18. Schmohl JU1, Gleason MK2, Dougherty PR, Miller JS, Vallera DA. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. 2016;11(3):353-61. [DOI:10.1007/s11523-015-0391-8]
19. Lin L, Li LI, Zhou C, Li J, Liu J, Shu RUI, et al. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. 2018;16(1):1259-1266. [DOI:10.3892/ol.2018.8698]
20. Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013;4:217. [DOI:10.3389/fimmu.2013.00217]
21. Gomes1 AR, Byregowda1 SM, Belamaranahally, Veeregowda2 M, Vinayagamurthy Balamurugan3. An Overview of Heterologous Expression Host Systems for the Production of Recombinant Proteins. Advances in Animal and Veterinary Sciences. 2016;4(7):346-356. [DOI:10.14737/journal.aavs/2016/4.7.346.356]
22. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli : advances and challenges. Front Microbiol. 2014;5:172. [DOI:10.3389/fmicb.2014.00172]
23. Claudia Haas, Gurdun Strauss, Gred Moldenhauer, Ronald M. Iorio VS. Bispecific antibodies increase T-cell stimulatory capacity in vitro of human autologous virus-modified tumor vaccine. Clin Cancer Res. 1998;4(3):721-30.
24. Hombach A, Jung W, Pohl C, Renner C, Sahin U, Schmits R, et al. A CD16/CD30 bispecific monoclonal antibody induces lysis of hodgkin's cells by unstimulated natural killer cells In AND In vivo. Int J Cancer. 1993;55(5):830-6. [DOI:10.1002/ijc.2910550523]
25. Green MR, Sambrook J. Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press; 4th edition. 2012.
26. Schindelin J, Arganda-carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji : an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82. [DOI:10.1038/nmeth.2019]
27. Mandelboim O, Malik P, Davis, Jo CH, Boyson JE, Strominger JL. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci U S A.1999;96(10):5640-4. [DOI:10.1073/pnas.96.10.5640]
28. Felices M, Lenvik TR, Davis ZB, Miller JS, Daniel A. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333-46. [DOI:10.1007/978-1-4939-3684-7_28]
29. Vallera DA, Zhang B, Gleason MK, Oh S, Weiner LM, Kaufman DS, et al. Heterodimeric Bispecific Single-Chain Variable-Fragment Antibodies Against EpCAM and CD16 Induce Effective Antibody-Dependent Cellular Cytotoxicity Against Human Carcinoma Cells. Cancer Biother Radiopharm. 2013;28(4):274-82. [DOI:10.1089/cbr.2012.1329]
30. Chen D, Texada DE. Low-usage codons and rare codons of Escherichia coli. Gene therapy & molecular biology. 2006;10:1-12.
31. Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H. Cancer Therapy : Preclinical A Bispecific Recombinant Immunotoxin, DT2219, T argeting Human CD19 and CD22 Receptors in a Mouse Xenograft Model of B-Cell Leukemia / Lymphoma. 2005;11(10):3879-88. [DOI:10.1158/1078-0432.CCR-04-2290]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb