Volume 9, Issue 2 (Vol.9 No.2 Jul 2020)                   rbmb.net 2020, 9(2): 140-146 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moosavi S M, Pouresmaeil O, Zandi H, Emadi S, Akhavan F, Torki A et al . The Evaluation of Antibiotic Resistance and nalB Mutants in Pseudomonas aeruginosa Isolated from Burnt Patients of Shohada Mehrab Yazd Hospital Burn Ward. rbmb.net. 2020; 9 (2) :140-146
URL: http://rbmb.net/article-1-469-en.html
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Abstract:   (1045 Views)
Background: Due to extensive damage to the skin, burn victims may acquire life-threatening infections. Though the skin primarily protects against microbial invasions, a large number of bacteria, fungi, and viruses can be isolated from burn patients, specifically Pseudomonas aeruginosa, a gram-negative bacterium with both intrinsic and acquired antibiotic resistance (AR) properties. nalB mutations can be found on the mexR in the P. aeruginosa chromosome. This mutation can induce overexpression of the mexAB-oprMoperon, and affect the MexAB-OprM efflux pump, which removes antimicrobial agents from the bacterial cell. Identifying nalB mutants can be useful for monitoring factors affecting AR.

Methods: In this study, 70 P. aeruginosa isolates identified from burn patients and antibacterial sensitivity was evaluated using the Kirby-Bauer method. We also investigated nalB mutations in samples using molecular methods including Polymerase reaction chain (PCR) and Sequencing.

Results: We identified nalB mutations in 16 isolates. We also found that the increasing effect of nalB mutants induces hyper production activity of MexAB-OprM resulting in AR. Overall, these findings compliment the findings of previous reports.

Conclusions: According to the resistance patterns of the samples, both Amikacin and Ciprofloxacin showed the highest resistance (%). Further, the relationship between Ciprofloxacin resistance and nalB mutations was statistically significant (p= 0.016). The results confirm that the increasing effect of nalB mutants on hyper production activity of MexAB-OprM leads to AR.
Full-Text [PDF 166 kb]   (800 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2020/02/21 | Accepted: 2020/04/14 | Published: 2020/10/7

References
1. Hranjec T, Turrentine FE, Stukenborg G, Young JS, Sawyer RG, Calland JF. Burn-center quality improvement: are burn outcomes dependent on admitting facilities and is there a volume-outcome "sweet-spot"?. Am Surg. 2012;78(5):559-66. [DOI:10.1177/000313481207800538] [PMID] [PMCID]
2. Owlia P, Azimi L, Gholami A, Asghari B, Lari AR. ESBL-and MBL-mediated resistance in Acinetobacter baumannii: a global threat to burn patients. Infez Med. 2012;20(3):182-7.
3. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403-434. [DOI:10.1128/CMR.19.2.403-434.2006] [PMID] [PMCID]
4. Rosanova MT, Brizuela M, Villasboas M, Guarracino F, Alvarez V, Santos P, et al. Fusarium spp infections in a pediatric burn unit: nine years of experience. Braz J Infect Dis. 2016;20(4):389-92. [DOI:10.1016/j.bjid.2016.04.004] [PMID]
5. Kubota Y, Kosaka K, Hokazono T, Yamaji Y, Tezuka T, Akita S, et al. Disseminated zoster in an adult patient with extensive burns: a case report. Virol J. 2019;16(1):68. [DOI:10.1186/s12985-019-1179-8] [PMID] [PMCID]
6. Khan TM, Kok YL, Bukhsh A, Lee LH, Chan KG, Goh BH. Incidence of methicillin resistant Staphylococcus aureus (MRSA) in burn intensive care unit: a systematic review. Germs. 2018;8(3):113-125. [DOI:10.18683/germs.2018.1138] [PMID] [PMCID]
7. Hasan R, Acharjee M, Noor R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi. 2016;28(2):49-53. [DOI:10.1016/j.tcmj.2016.03.002] [PMID] [PMCID]
8. Sharma S, Kaur N, Malhotra S, Madan P, Hans C. Control of an Outbreak of Acinetobacter baumannii in Burn Unit in a Tertiary Care Hospital of North India. Advances in Public Health. 2014. [DOI:10.1155/2014/896289]
9. Chim H, Tan BH, Song C. Five-year review of infections in a burn intensive care unit: High incidence of Acinetobacter baumannii in a tropical climate. Burns. 2007;33(8):1008-14. [DOI:10.1016/j.burns.2007.03.003] [PMID]
10. Degaim ZD, Al-Malk HK, Nassar AM, Nasir AA. Molecular detection of two virulence factors of Pseudomonas aeruginosa isolated from burn patients. University of Thi-Qar Journal of Science. 2019;7(1):62-5.
11. de Almeida KCF, Calomino MA, Deutsch G, de Castilho SR, de Paula GR, Esper LMR, et al. Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns. 2017;43(1):137-143. [DOI:10.1016/j.burns.2016.07.002] [PMID]
12. Al-Aali KY. Microbial profile of burn wound infections in burn patients, Taif, Saudi Arabia. Arch Clin Microbiol. 2016;7(2):1-9.
13. Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy. 2005;25(10):1353-64. [DOI:10.1592/phco.2005.25.10.1353] [PMID]
14. Bielecki P, Glik J, Kawecki M, dos Santos VAM. Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett. 2008;30(5):777-90. [DOI:10.1007/s10529-007-9620-2] [PMID]
15. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. [DOI:10.3389/fcimb.2017.00039] [PMID] [PMCID]
16. Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol Lett. 1999;179(1):67-72. [DOI:10.1111/j.1574-6968.1999.tb08709.x] [PMID]
17. Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(5):1782-6. [DOI:10.1128/AAC.49.5.1782-1786.2005] [PMID] [PMCID]
18. Ferrer-Espada R, Shahrour H, Pitts B, Stewart PS, Sanchez-Gomez S, Martinez-de-Tejada G. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep. 2019;9(1):3452. [DOI:10.1038/s41598-019-39659-4] [PMID] [PMCID]
19. Tian Z-X, Yi X-X, Cho A, O'Gara F, Wang Y-P. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLoS pathog. 2016;12(10):e1005932. [DOI:10.1371/journal.ppat.1005932] [PMID] [PMCID]
20. Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F, et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother. 2002;50(5):657-64. [DOI:10.1093/jac/dkf185] [PMID]
21. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. 2009.
22. Wayne, PA. Clinical and Laboratory Standards Institute; Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. 2018.
23. Clarke L, Millar BC, Moore JE. Extraction of genomic DNA from Pseudomonas aeruginosa: a comparison of three methods. Br J Biomed Sci. 2003;60(1):34-5. [DOI:10.1080/09674845.2003.11978040] [PMID]
24. Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug resistance updates. 2000;3(4):247-55. [DOI:10.1054/drup.2000.0152] [PMID]
25. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002;95 Suppl 41:22-6.
26. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial Chemotherapy. 2001;47(3):247-50. [DOI:10.1093/jac/47.3.247] [PMID]
27. Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res. 2003;2(1):48-62.
28. Rocha AJ, Barsottini MRdO, Rocha RR, Laurindo MV, Moraes FLLd, Rocha SLd. Pseudomonas Aeruginosa: Virulence Factors and Antibiotic Resistance Genes. Brazilian Archives of Biology and Technology. 2019;62(62):19180503. [DOI:10.1590/1678-4324-2019180503]
29. Nakajima A, Sugimoto Y, Yoneyama H, Nakae T. High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol immunol. 2002;46(6):391-5. [DOI:10.1111/j.1348-0421.2002.tb02711.x] [PMID]
30. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004;48(5):1797-802. [DOI:10.1128/AAC.48.5.1797-1802.2004] [PMID] [PMCID]
31. Klinoski RL. PA3719-mediated regulation of the MexAB-OprM efflux system of Pseudomonas aeruginosa. 2007.
32. Dupont P, Hocquet D, Jeannot K, Chavanet P, Plesiat P. Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 2005;55(4):518-22. [DOI:10.1093/jac/dki030] [PMID]
33. Adewoye L, Sutherland A, Srikumar R, Poole K. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol. 2002;184(15):4308-12. [DOI:10.1128/JB.184.15.4308-4312.2002] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb